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1 Vectors and linear combinations
Linear Algebra is the study of vectors together with operations on vectors: linear combinations.
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1.1 Vector
Mathematically, a vector is an element of a vector space... More on that later.
Geometrically, a vector is characterized by a length or magnitude, and a direction. It is typically represented by

an arrow. The translation of a vector represents de same vector
In coordinates, a vector in ℝ𝑛 (that is, in dimension 𝑛) is given as 𝑛 numbers called components or coordinates. It

may be represented horizontally or vertically as a matrix:

�⃗� = (𝑥1, 𝑥2,… , 𝑥𝑛) =

⎡

⎢

⎢

⎢

⎣

𝑥1
𝑥2
…
𝑥𝑛

⎤

⎥

⎥

⎥

⎦

.

1.2 Addition and multiplication by a factor
Geometrically, adding vectors means concatenating the arrows.
In coordinates, this means adding the coordinates. For instance, if 𝑢 = (𝑢1, 𝑢2,… , 𝑢𝑛) and 𝑣 = (𝑣1, 𝑣2,… , 𝑣𝑛),then one has:

𝑢 + 𝑣 =

⎡

⎢

⎢

⎢

⎣

𝑢1 + 𝑣1
𝑢2 + 𝑣2
…

𝑢𝑛 + 𝑣𝑛

⎤

⎥

⎥

⎥

⎦

.

Geometrically, multiplying by a factor (or scalar, or number) 𝑐 ∈ ℝ means multiplying the length by |𝑐|, and
keeping the same direction if 𝑐 ⩾ 0 or considering its opposite if 𝑐 < 0.

In coordinates, this means multiplying all of the coordinates by the factor 𝑐. For instance, one has:

𝑐𝑢 =

⎡

⎢

⎢

⎢

⎣

𝑐𝑢1
𝑐𝑢2
…
𝑐𝑢𝑛

⎤

⎥

⎥

⎥

⎦

.

1.3 Linear combination and span
A linear combination of �⃗�1, . . . , �⃗�𝑘 (note that 𝑘 has nothing to do with the dimension!) is a vector of the form

𝑐1�⃗�1 +⋯ + 𝑐𝑘�⃗�𝑘, where 𝑐1,… , 𝑐𝑘 ∈ ℝ.

The linear span of vectors �⃗�1, . . . , �⃗�𝑘 is the set of linear combinations of �⃗�1, . . . , �⃗�𝑘. Our notation is going to be
Span(�⃗�1,… , �⃗�𝑘) =

{

𝑐1�⃗�1 +⋯ + 𝑐𝑘�⃗�𝑘, 𝑐1,… , 𝑐𝑘 ∈ ℝ
}

.

If a family �⃗�1, . . . , �⃗�𝑘 spans the whole space ℝ𝑛 (i.e. Span(�⃗�1,… , �⃗�𝑘) = ℝ𝑛), then one has 𝑘 ⩾ 𝑛.
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2 Linearly independent vectors and bases

2.1 Linear independent families of vectors
We say that a family of vectors �⃗�1, . . . , �⃗�𝑘 is linearly independent if the only vanishing linear combination of �⃗�1,

. . . , �⃗�𝑘 is the trivial one with zero coefficients. In more mathematical terms: if
𝑐1�⃗�1 +⋯ + 𝑐𝑘�⃗�𝑘 = 0 ⟹ 𝑐1 = ⋯ = 𝑐𝑘 = 0.

If a family �⃗�1, . . . , �⃗�𝑘 in ℝ𝑛 is linearly independent, then one has 𝑘 ⩽ 𝑛.

2.2 Bases and dimension
A basis of ℝ𝑛 is a family of vectors �⃗�1, . . . , �⃗�𝑘 which is linearly independent and spans ℝ𝑛. It implies that 𝑘 = 𝑛 –

the number of vectors in a basis is always equal to the dimension.
Equivalent definitions are: �⃗�1, . . . , �⃗�𝑘 is a basis if one of the following equivalent properties is satisfied

1. 𝑘 = 𝑛 and the family is linearly independent (typically the most important/useful),
2. 𝑘 = 𝑛 and the family spans ℝ𝑛.

3 Dot product
The dot product of 𝑢 = (𝑢1,… , 𝑢𝑛) and 𝑣 = (𝑣1,… , 𝑣𝑛) is:

𝑢 ⋅ 𝑣 = 𝑢1𝑣1 + 𝑢2𝑣2 +⋯ + 𝑢𝑛𝑣𝑛.

The length of a vector 𝑢 is:
‖𝑢‖ =

√

𝑢 ⋅ 𝑢.

Denoting 𝜃 the angle between 𝑢 and 𝑣, we have the relation:
𝑢 ⋅ 𝑣 = ‖𝑢‖‖𝑣‖ cos 𝜃,

which leads to the inequality
|

|

𝑢 ⋅ 𝑣|
|

⩽ ‖𝑢‖‖𝑣‖.

Two vectors 𝑢 and 𝑣 are said to be orthogonal or perpendicular if:
𝑢 ⋅ 𝑣 = 0,

or equivalently 𝜃 = 𝜋
2 .

Another important inequality is the triangle inequality:
‖𝑢 + 𝑣‖ ⩽ ‖𝑢‖ + ‖𝑣‖.
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4 Operations on matrices
A matrix is a rectangular array of number. A 𝑝 × 𝑞 matrix has 𝑝 rows and 𝑞 columns.
We may write 𝑝 × 𝑞 matrices “in components” as 𝑀 = (𝑚𝑖𝑗)𝑖∈{1,…,𝑝},𝑗∈{1,…,𝑞} corresponding to the array of

numbers:

𝑀 =

⎡

⎢

⎢

⎢

⎣

𝑚11 𝑚12 … 𝑚1𝑞
𝑚21 𝑚22 … 𝑚2𝑞
… … … …
𝑚𝑝1 𝑚𝑝2 … 𝑚𝑝𝑞

⎤

⎥

⎥

⎥

⎦

.

A square matrix has 𝑝 = 𝑞.
A vector only has one column, it is a 𝑝 × 1 matrix.

4.1 Matrix addition and multiplication by a factor
The sum of two matrices is the sum of its components:

(𝑎𝑖𝑗)𝑖∈{1,…,𝑝},𝑗∈{1,…,𝑞} + (𝑏𝑖𝑗)𝑖∈{1,…,𝑝},𝑗∈{1,…,𝑞} = (𝑎𝑖𝑗 + 𝑏𝑖𝑗)𝑖∈{1,…,𝑝},𝑗∈{1,…,𝑞},

Similarly, one has for any 𝑐 ∈ ℝ: 𝑐 (𝑎𝑖𝑗)𝑖∈{1,…,𝑝},𝑗∈{1,…,𝑞} = (𝑐 𝑎𝑖𝑗)𝑖∈{1,…,𝑝},𝑗∈{1,…,𝑞}.

4.2 Matrix-vector and matrix-matrix multiplication
In order to multiply a matrix 𝑝 × 𝑞 and a 𝑟 × 𝑠 matrix, one must have 𝑞 = 𝑟.

4.2.1 Matrix-vector multiplication

In coordinates, the (left) multiplication of �⃗� = (𝑥1,… , 𝑥𝑞) by the matrix 𝑀 = (𝑚𝑖𝑗)𝑖∈{1,…,𝑝},𝑗∈{1,…,𝑞} is the
following vector of ℝ𝑝 (or 𝑝 × 1 matrix)

𝑀�⃗� =
(

𝑞
∑

𝑗=1
𝑚1𝑗𝑥𝑗 ,

𝑞
∑

𝑗=1
𝑚2𝑗𝑥𝑗 , … ,

𝑞
∑

𝑗=1
𝑚𝑝𝑗𝑥𝑗

)

∈ ℝ𝑝.

If one considers the rows of 𝑀 as vectors in ℝ𝑞: �⃗�𝑖 = (𝑚𝑖1,… , 𝑚𝑖𝑞), one ca rewrite:
𝑀�⃗� =

(

�⃗�1 ⋅ �⃗� , �⃗�2 ⋅ �⃗� , … , �⃗�𝑝 ⋅ �⃗�
)

∈ ℝ𝑝.

If on the other hand, one considers the columns of 𝑀 as vectors of ℝ𝑝, 𝜇𝑗 = (𝑚1𝑗 , 𝑚2𝑗 ,… , 𝑚𝑝𝑗), one may also
rewrite:

𝑀�⃗� = 𝑥1𝜇1 + 𝑥2𝜇2 +⋯ + 𝑥𝑞𝜇𝑞 ∈ ℝ𝑝.

In conclusion, it is useful to notice that a matrix can be written as the set of its columns or as the set of its rows.

𝑀 =

⎡

⎢

⎢

⎢

⎣

𝑚11 𝑚12 … 𝑚1𝑞
𝑚21 𝑚22 … 𝑚2𝑞
… … … …
𝑚𝑝1 𝑚𝑝2 … 𝑚𝑝𝑞

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

�⃗�𝑇
1

�⃗�𝑇
2

…
�⃗�𝑇
𝑝

⎤

⎥

⎥

⎥

⎦

=
[

𝜇1 𝜇2 … 𝜇𝑞
]

.

7



where �⃗�𝑇
𝑖 will be defined very soon as the “transpose” of the vector �⃗�𝑖, that is the matrix composed of one row whose

coefficients are the coefficients of �⃗�𝑖. The �⃗�𝑇
𝑖 are the rows of 𝑀 , and the 𝜇𝑗 are the columns of 𝑀 .

4.2.2 Matrix-matrix multiplication

The product of a 𝑝 × 𝑞 matrix and a 𝑞 × 𝑟 matrix is a 𝑝 × 𝑟 matrix. Denote 𝑐𝑖𝑗 the (𝑖, 𝑗) ∈ {1,… , 𝑝} × {1,… , 𝑟}
component of the product of (𝑎𝑖𝑗)1⩽𝑖⩽𝑝,1⩽𝑗⩽𝑞 and (𝑏𝑖𝑗)1⩽𝑖⩽𝑞,1⩽𝑗⩽𝑟, i.e. 𝐶 = 𝐴𝐵 with obvious notations. Then, the
coefficients of the product are given by:

𝑐𝑖𝑗 =
∑

𝑘
𝑎𝑖𝑘𝑏𝑘𝑗 .

Each column of 𝐶 is the matrix-vector product of 𝐴 with the corresponding column of 𝐵.

Note: Even if 𝐴 and 𝐵 are square, we generally do not have 𝐴𝐵 = 𝐵𝐴.

4.3 Matrices, linear combinations and linear systems
A linear system of equations of size 𝑝 × 𝑞 is generally of the form

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑎11𝑥1 + 𝑎12𝑥2 +⋯ + 𝑎1𝑞𝑥𝑞 = 𝑏1
𝑎21𝑥1 + 𝑎22𝑥2 +⋯ + 𝑎2𝑞𝑥𝑞 = 𝑏2

… … …
𝑎𝑝1𝑥1 + 𝑎𝑝2𝑥2 +⋯ + 𝑎𝑝𝑞𝑥𝑞 = 𝑏𝑝.

This corresponds exactly to the equation
𝐴�⃗� = �⃗�,

for 𝐴 = (𝑎𝑖𝑗)1⩽𝑖⩽𝑝,1⩽𝑗⩽𝑞 , �⃗� = (𝑥1,… , 𝑥𝑞), and �⃗� = (𝑏1,… , 𝑏𝑝).
Consider the matrix 𝐴 whose columns are vectors �⃗�𝑗 :

𝐴 =
[

�⃗�1 �⃗�2 … �⃗�𝑞
]

,

and the vector
�⃗� = (𝑥1,… , 𝑥𝑞).

As seen above, the linear combination with coefficients 𝑥1,… , 𝑥𝑞 of the vectors �⃗�1,… , �⃗�𝑞 can be written in matrix
form as

𝑥1�⃗�1 + 𝑥2�⃗�2 +⋯ + 𝑥𝑞 �⃗�𝑞 = 𝐴�⃗�.

The question of whether or not there exists a solution to the linear system is exactly the question of whether or
not �⃗� ∈ Span(�⃗�1,… , �⃗�𝑞). The uniqueness is exactly the question of the linear independence of (�⃗�1,… , �⃗�𝑞). More
precisely, the linear independence of (�⃗�1,… , �⃗�𝑞) is equivalent to the statement that the only solution �⃗� of 𝐴�⃗� = 0⃗ is
�⃗� = 0⃗.

5 Solving linear systems
A streamlined method for solving linear systems is the so-called (Gaussian) elimination or elimination.
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5.1 Linear system of equations
A linear systems of equations is of the form:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑎11𝑥1 + 𝑎12𝑥2 +⋯ + 𝑎1𝑞𝑥𝑞 = 𝑏1
𝑎21𝑥1 + 𝑎22𝑥2 +⋯ + 𝑎2𝑞𝑥𝑞 = 𝑏2

… … …
𝑎𝑝1𝑥1 + 𝑎𝑝2𝑥2 +⋯ + 𝑎𝑝𝑞𝑥𝑞 = 𝑏𝑝.

The 𝑎𝑖𝑗 and 𝑏𝑖 are given, while the 𝑥𝑗 are the unknowns that we search for.
The situation is best when you have as many equations as unknowns, i.e. 𝑝 = 𝑞. We will see why later, but typically,

to expect a solution, one needs 𝑝 ⩾ 𝑞. “Forgetting” some equations, you can recover the 𝑝 = 𝑞 situation.

5.1.1 In dimension 2

When 𝑝 = 𝑞 = 2, linear systems are of the form
{

𝑎11𝑥 + 𝑎12𝑦 = 𝑏1
𝑎21𝑥 + 𝑎22𝑦 = 𝑏2.

Row picture: Both equations are equations of lines. We are therefore looking for the the intersection of two lines
in the plane. There is typically a unique solution.

However, if the two lines are parallel, the intersection is either empty or the whole line: there are either no solutions
or there are infinitely many of them.

Column picture: Denoting �⃗�1 = (𝑎11, 𝑎21), �⃗�2 = (𝑎12, 𝑎22) and �⃗� = (𝑏1, 𝑏2), the system of equations can be written
as:

𝑥�⃗�1 + 𝑦�⃗�2 = �⃗�.

We are looking for a linear combination of the columns that reaches �⃗�. The coefficients of the linear combination are
our unknowns 𝑥 and 𝑦.

5.1.2 In higher dimensions

In higher dimensions, the row and column pictures still hold. One either looks for the intersection of 𝑝 hyperplanes
in ℝ𝑞 , or for a linear combination with 𝑞 terms of vectors in ℝ𝑝.

The geometric interpretation however becomes less and less useful as the dimensions grow. We need a more
systematic and even algorithmic method.

5.2 Solving linear systems of equations
5.2.1 Gaussian elimination

The elimination method is algorithmic and iterative. We want to reduce a 𝑝× 𝑝 system to a (𝑝−1) × (𝑝−1) system
and iterate to find a (𝑝 − 2) × (𝑝 − 2) system... until we reach a 1 × 1 system that you all know how to solve.
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Let us illustrate the general process on
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑎11𝑥1 + 𝑎12𝑥2 +⋯ + 𝑎1𝑞𝑥𝑞 = 𝑏1 (𝑅1)
𝑎21𝑥1 + 𝑎22𝑥2 +⋯ + 𝑎2𝑞𝑥𝑞 = 𝑏2 (𝑅2)

… … …
𝑎𝑝1𝑥1 + 𝑎𝑝2𝑥2 +⋯ + 𝑎𝑝𝑞𝑥𝑞 = 𝑏𝑝. (𝑅𝑝)

1. if 𝑎11 ≠ 0, we call it the first pivot and will use it to get rid of the variable 𝑥1 in every other row.
2. for 𝑖 ⩾ 2, replace (𝑅𝑖) by (𝑅′

𝑖) = (𝑅𝑖) − 𝑙𝑖1𝑅1, where 𝑙𝑖1 =
𝑎𝑖1
𝑎11

is the i𝑡ℎ multiplier.
3. This gets rid of every 𝑥1 except in the first equation. The (equivalent) system now looks like:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑎11𝑥1 +𝑎12𝑥2 +⋯ + 𝑎1𝑞𝑥𝑞 = 𝑏1 (𝑅1)
+𝑎′22𝑥2 +⋯ + 𝑎′2𝑞𝑥𝑞 = 𝑏′2 (𝑅′

2)

… … …
+𝑎′𝑝2𝑥2 +⋯ + 𝑎′𝑝𝑞𝑥𝑞 = 𝑏′𝑝. (𝑅′

𝑝)

Retaining only the last 𝑝 − 1 lines, we are now looking at a (𝑝 − 1) × (𝑝 − 1) system whose pivot is 𝑎′22 if it does not
vanish. By iterating this process, we obtain an upper triangular system that can be solved by back substitution.

5.2.2 Matrix picture of Gaussian elimination

The key to this method is that once the system is upper triangular, everything becomes easy to solve.
All of the above operations can be written as matrix multiplications on the left. These matrix multiplications

transform the initial matrix 𝐴 into an upper triangular matrix 𝑈 (i.e. with 𝑢𝑖𝑗 = 0 if 𝑖 > 𝑗), and the vector �⃗� into
another vector 𝑐.

5.2.3 When the method fails

The method fails when one pivot vanishes. There may be a fix to this: for instance if 𝑎11 = 0 but 𝑎𝑖1 ≠ 0, we may
exchange rows (𝑅1) and (𝑅𝑗) and apply the same method to the new system.

If all of the 𝑎𝑖1 vanish however, there is no fix and the method is typically doomed. This is exactly where there are
either no solutions or infinitely many. Think of the intersection of two lines!

6 Elimination as matrix multiplications
Recall that the matrix multiplication of 𝐴 ∈ ℝ𝑝×𝑞 and 𝐵 ∈ ℝ𝑞×𝑟 is the matrix whose columns are the products of

𝐴 and the columns of 𝐵.
An important property is the associativity 𝐴(𝐵𝐶) = (𝐴𝐵)𝐶 . In general, we do not have commutation: generally

𝐴𝐵 ≠ 𝐵𝐴 !!

6.1 The identity matrix
The identity matrix I𝑝 ∈ ℝ𝑝×𝑝 is the neutral element for the matrix multiplication: for any matrix 𝐴 ∈ ℝ𝑛×𝑝 and

𝐵 ∈ ℝ𝑝×𝑞 , we have:
𝐴 I𝑝 = 𝐴 and I𝑝 𝐵 = 𝐵,
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in particular, if 𝑝 = 𝑛, 𝐴 I𝑝 = I𝑝 𝐴 = 𝐴.
The identity matrix is diagonal, i.e. its off-diagonal coefficients for 𝑖 ≠ 𝑗 vanish. Its diagonal coefficients are all 1:

I𝑝 =

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0 … 0
0 1 0 … 0
0 0 1 … 0
… … … … …
0 0 0 … 1

⎤

⎥

⎥

⎥

⎥

⎦

.

6.2 Elimination and matrix operations
In the elimination process, we saw two types of elementary operations: linear combinations of two rows, and

exchanging two rows.

6.2.1 Canonical basis for matrices

ℝ𝑛 has a canonical basis 𝑒1 = (1, 0,… , 0), 𝑒2 = (0, 1, 0… , 0), ..., 𝑒𝑛 = (0, 0,… , 0, 1), i.e. 𝑒𝑖 is the vector with only
zero coordinates, except 1 at the 𝑖-th component.

Similarly, the space of matrices ℝ𝑝×𝑞 also has a canonical basis. Its elements are 𝐸𝑖𝑗 , the matrix with only zeros
except at the (𝑖, 𝑗) component. For instance, 𝐸32 in ℝ𝑝×𝑞 has the form

𝐸32 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 … 0
0 0 0 … 0
0 1 0 … 0
0 0 0 … 0
… … … … …
0 0 0 … 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Multiplying 𝐴 on the left by 𝐸𝑖𝑗 results in the matrix with only zeros, except on row 𝑖 where the 𝑗-th row of 𝐴 is
copied-pasted.

Note: This 𝐸𝑖𝑗 is a widespread notation. In the book we follow it means something different: I𝑝 −𝑙𝑖𝑗𝐸𝑖𝑗

6.2.2 Linear combination of rows as a matrix operation

One of the elementary operations consisted in substracting 𝑙𝑖𝑗 times the row 𝑗 to the row 𝑖. This can be written as
a matrix multiplication: the left multiplication by

I𝑝 −𝑙𝑖𝑗𝐸𝑖𝑗 .

Indeed, I𝑝 just repeats the same matrix while −𝑙𝑖𝑗𝐸𝑖𝑗 substracts 𝑙𝑖𝑗 times the row 𝑗 to the row 𝑖.

6.2.3 Permutation as a matrix operation

Another important operation is the permutation of two rows. This can be obtained by the left multiplication by the
permutation matrix 𝑃𝑖𝑗 equal to the identity on which one exchanges rows 𝑖 and 𝑗.

7 Inverse matrices
In this section, we only consider square matrices 𝑝 × 𝑝.
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7.1 Some properties of matrix operations

𝐴 + 𝐵 = 𝐵 + 𝐴 𝑐(𝐴 + 𝐵) = 𝑐𝐴 + 𝑐𝐵
𝐴 + (𝐵 + 𝐶) = (𝐴 + 𝐵) + 𝑐 𝐶(𝐴 + 𝐵) = 𝐶𝐴 + 𝐶𝐵
(𝐴 + 𝐵)𝐶 = 𝐴𝐶 + 𝐵𝐶 𝐴(𝐵𝐶) = (𝐴𝐵)𝐶.

7.2 Powers of a square matrix
We define 𝐴0 = I𝑝 and for 𝑘, 𝑙 ⩾ 1, one has:

𝐴𝑘 = 𝐴𝐴…𝐴
⏟⏞⏟⏞⏟
𝑘 times

,

and the formulas:
(𝐴𝑘)𝑙 = 𝐴𝑘𝑙 𝐴𝑘𝐴𝑙 = 𝐴𝑘+𝑙 = 𝐴𝑙𝐴𝑘.

7.3 Negative powers and inverse
A matrix 𝐴 ∈ ℝ𝑝×𝑝 is invertible if it has an inverse, i.e., there exists 𝐵 ∈ ℝ𝑝×𝑝 such that:

𝐴𝐵 = 𝐵𝐴 = I𝑝 .

Such a 𝐵 is unique when it exists and we will denote it 𝐴−1.
𝐴−1 can be computed by elimination and exists if and only if the pivots do not vanish (up to exchanging rows).
The typical picture is to start by the 𝑝×2𝑝 matrix consisting of 𝐴 and I𝑝 and operate by left multiplication in order to

"eliminate" terms on the left matrix. At the end of the process, one is left with the 𝑝×2𝑝 matrix consisting of I𝑝 and 𝐴−1.
If 𝐴 is invertible and one tries to solve the linear system 𝐴�⃗� = �⃗�, then the unique solution is �⃗� = 𝐴−1�⃗�.
A 𝑝 × 𝑝 matrix is invertible if and only if the only solution of 𝐴�⃗� = 0⃗ is �⃗� = 0⃗.
A 𝑝 × 𝑝 matrix is invertible if and only if its columns are linearly independent.

7.4 Properties and formulas for the inverse
Some properties:

(𝐴𝐵)−1 = 𝐵−1𝐴−1 (𝐴𝐵𝐶)−1 = 𝐶−1𝐵−1𝐴−1.

For a 2 × 2 matrix 𝐴 =
[

𝑎 𝑏
𝑐 𝑑

]

, and when 𝑎𝑑 − 𝑏𝑐 ≠ 0, one has:

𝐴−1 = 1
𝑎𝑑 − 𝑏𝑐

[

𝑑 −𝑏
−𝑐 𝑎

]

.

8 LU factorization of matrices
A computationally useful decomposition of matrices is the 𝐿𝑈 or sometimes 𝐿𝐷𝑈 decomposition.
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8.1 Triangular matrices
Upper (resp. lower) triangular matrices only have zero coefficients below (resp. above) the diagonal.
A product of upper (resp. lower) triangular matrices is an upper (resp. lower) triangular matrices.
An upper (resp. lower) triangular matrices is invertible if and only if all of its diagonal terms are non zero. And if

it is the case, their inverses are also upper (resp. lower) triangular matrices.

8.2 Elimination and 𝐿𝑈 decomposition
The matrices appearing in the process of elimination I𝑝 −𝑙𝑖𝑗𝐸𝑖𝑗 with 𝑖 > 𝑗 (resp. with 𝑖 < 𝑗) are lower (resp.

upper) triangular matrices. Their inverses are simply I𝑝 +𝑙𝑖𝑗𝐸𝑖𝑗 .
Let us forget about permutations (which are almost never needed). From a matrix point of view, the elimination

process for a linear system can be written as:
(I𝑝 −𝑙𝑝,𝑝−1𝐸𝑝,𝑝−1)⋯ (I𝑝 −𝑙31𝐸31) (I𝑝 −𝑙21𝐸21)𝐴�⃗� = 𝑈�⃗�

for an upper triangular matrix 𝑈 . Now the observation is that (I𝑝 −𝑙𝑝,𝑝−1𝐸𝑝,𝑝−1)⋯ (I𝑝 −𝑙31𝐸31) (I𝑝 −𝑙21𝐸21) is lower
triangular so its inverse

𝐿 =
[

(I𝑝 −𝑙𝑝,𝑝−1𝐸𝑝,𝑝−1)⋯ (I𝑝 −𝑙31𝐸31) (I𝑝 −𝑙21𝐸21)
]−1

= (I𝑝 −𝑙21𝐸21)−1 (I𝑝 −𝑙31𝐸31)−1⋯ (I𝑝 −𝑙𝑝,𝑝−1𝐸𝑝,𝑝−1)−1

= (I𝑝 +𝑙21𝐸21) (I𝑝 +𝑙31𝐸31)⋯ (I𝑝 −𝑙𝑝,𝑝−1𝐸𝑝,𝑝−1),

is also lower triangular and easy to compute.
The LU decomposition of 𝐴 is 𝐴 = 𝐿𝑈 .

8.3 Use of the LU decomposition

Once you know that 𝐴 = 𝐿𝑈 and you want to solve the system 𝐴�⃗� = �⃗�, there is a trick: introduce an undetermined
𝑐 and solve the two successive triangular (hence easy to solve by back substitution!) systems:

1. 𝐿𝑐 = �⃗�,
2. 𝑈�⃗� = 𝑐.

The vector �⃗� is then solution to the equation 𝐴�⃗� = �⃗�.

9 Linear systems and uniqueness of the solution

9.1 A simple observation

If a linear system 𝐴�⃗� = �⃗� has two solutions �⃗�1 and �⃗�2, then 𝑦 = �⃗�1 − �⃗�2 is a solution of 𝐴𝑦 = 0⃗.
We deduce:
1. the uniqueness of the solution is independent of �⃗�,
2. it is equivalent to: 𝐴𝑦 = 0⃗ if and only if 𝑦 = 0⃗, and
3. it is also equivalent to: the columns of 𝐴 are linearly independent.
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9.2 The nullspace or kernel

The nullspace (or kernel) of a matrix 𝐴 is the set of vectors 𝑦 satisfying 𝐴𝑦 = 0⃗. If 𝐴 is a 𝑝 × 𝑞 matrix, we will
denote it:

𝑁(𝐴) =
{

𝑦, 𝐴𝑦 = 0⃗
}

∈ ℝ𝑞 .

Some common other notations are Null(𝐴) and in mathematics, the most common would be ker(𝐴) for “kernel”.
If there exists 𝑥0 such that 𝐴�⃗�0 = �⃗� he set of solutions of 𝐴�⃗� = �⃗� is �⃗�0 +𝑁(𝐴), that is the set of vectors �⃗� = �⃗�+ 𝑦

for 𝑦 ∈ 𝑁(𝐴). �⃗�0 is a particular solution, and 𝑁(𝐴) is the direction of the space of solutions.
In particular, the solution �⃗�0 is unique if and only if 𝑁(𝐴) = {0⃗}.
If 𝐴 ∈ ℝ𝑝×𝑞 with 𝑞 > 𝑝 (“short and wide”), then 𝑁(𝐴) = {0⃗} is never satisfied, we will see that 𝑁(𝐴) is at least

(𝑞−𝑝)-dimensional. On the other hand, if 𝑞 ⩽ 𝑝 (“tall and thin”), then generically (almost surely), one has 𝑁(𝐴) = {0⃗}.

9.3 Computing the nullspace

Elimination is once again the first technique to solve equations 𝐴𝑦 = 0⃗. This time, in particular if 𝑞 > 𝑝, we need
an extension of triangular matrices, and they are echelon matrices.

An echelon matrix is a rectangular matrix transformed such that all zero rows are at the bottom and each leading
entry of a nonzero row is to the right of the leading entry of the previous row. The pivots are these nonzero leading
entries on each row.

On an echelon matrix, if 𝑦 = (𝑦1, ..., 𝑦𝑞) we distinguish pivot variables as the 𝑦𝑗 such that the column 𝑗 has a pivot,
and the other components of 𝑦 are called free variables.

The free variables can be chosen freely and the pivots will be determined by these choices. The free variables
parametrize the set of solutions (when it is not empty): the number of free variables is the dimension of 𝑁(𝐴).

The solutions are vectors whose coordinates are linear functions of the free variables.

10 Criterion for solving a linear system
An even more important question than that of uniqueness, is that of the existence of solutions to your equations.

10.1 The column space of a matrix (or its image, or range)
The column space of a matrix 𝐴 ∈ ℝ𝑝×𝑞 (or “image of 𝐴” or “range of 𝐴”) is the span of its column vectors: the

set of linear combinations of its column vectors. It is denoted 𝐶(𝐴) in our textbook, common other notations are Im(𝐴)
or 𝐴(ℝ𝑞). It is a subset of ℝ𝑝.

An equation 𝐴�⃗� = �⃗� admits a solution if and only if �⃗� ∈ 𝐶(𝐴).

10.2 Computing the column space
The column space cannot be computed as directly as the nullspace of a matrix, but its dimension is actually the

number of pivots. We call it the rank of a matrix 𝐴. We will see that this number is at the core of our structure theorem
about the set of solutions of a linear system.
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Elimination on a matrix 𝐴 ∈ ℝ𝑝×𝑞 consists in multiplying the matrix 𝐴 from the left by elementary 𝑝× 𝑝 matrices.
The result (with notations compatible with the LU decomposition) is

𝐿−1𝐴 = 𝑈, an echelon matrix.
Note that 𝑈 is not quite triangular, but just an echelon matrix.

As we saw, the nullspace of 𝐴 is equal to the nullspace of the echelon matrix 𝑈 = 𝐿−1𝐴. The column space of 𝐴
is 𝐶(𝐴) = 𝐿(𝐶(𝑈 )). More precisely, if 𝑈 =

[

𝑢1 𝑢2 … 𝑢𝑞
] is decomposed in column vectors, then one has

𝐶(𝑈 ) = Span(𝑢1, 𝑢2,… , 𝑢𝑞), and
𝐶(𝐴) = Span(𝐿(𝑢1), 𝐿(𝑢2),… , 𝐿(𝑢𝑞)).

One can then reduce this further: 𝐶(𝑈 ) is also the span of the pivot columns only, and 𝐶(𝐴) the span of the 𝐿(𝑢𝑖) for
𝑢𝑖 a pivot vector. The 𝐿(𝑢𝑖) form a basis of 𝐶(𝐴).

10.3 First part of the “fundamental theorem of linear algebra”
We have seen that the sum of number of pivot columns and the number of free columns was always 𝑞, the number

of columns. This leads to the following central formula:
Theorem 10.1.

𝑞 = dim𝑁(𝐴) + dim𝐶(𝐴).

This is the first part of what is sometimes called the fundamental theorem of linear algebra.

11 Vector spaces and linear maps
It is useful to think about our vector operations and matrices more abstractly and maybe more geometrically.

11.1 Vector (Sub)spaces
The full definition of a vector space is tedious to verify. For us, it will typically reduce to recalling the properties of

the addition and multiplication by a scalar. I copy it below if you are curious: A vector space 𝑉 over the real numbers
ℝ must satisfy the following axioms:
Closure Axioms

1. Closure under Addition: ∀𝑢, 𝑣 ∈ 𝑉 , 𝑢 + 𝑣 ∈ 𝑉

2. Closure under Scalar Multiplication: ∀𝑣 ∈ 𝑉 ,∀𝑐 ∈ ℝ, 𝑐𝑣 ∈ 𝑉

Arithmetic Axioms

3. Associativity of Addition: (𝑢 + 𝑣) + �⃗� = 𝑢 + (𝑣 + �⃗�)

4. Commutativity of Addition: 𝑢 + 𝑣 = 𝑣 + 𝑢

5. Identity Element of Addition: ∃0⃗ ∈ 𝑉 ∶ ∀𝑣 ∈ 𝑉 , 𝑣 + 0⃗ = 𝑣

6. Inverse Elements of Addition: ∀𝑣 ∈ 𝑉 ,∃ − 𝑣 ∈ 𝑉 ∶ 𝑣 + (−𝑣) = 0⃗

7. Compatibility of Scalar Multiplication with Scalar Addition: ∀𝑐, 𝑑 ∈ ℝ,∀𝑣 ∈ 𝑉 , (𝑐 + 𝑑)𝑣 = 𝑐𝑣 + 𝑑𝑣
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8. Compatibility of Scalar Multiplication with Scalar Multiplication: ∀𝑐, 𝑑 ∈ ℝ,∀𝑣 ∈ 𝑉 , (𝑐𝑑)𝑣 = 𝑐(𝑑𝑣)

9. Identity Element of Scalar Multiplication: ∀𝑣 ∈ 𝑉 , 1𝑣 = 𝑣

10. Distributivity of Scalar Multiplication with respect to Vector Addition: ∀𝑐 ∈ ℝ,∀𝑢, 𝑣 ∈ 𝑉 , 𝑐(𝑢 + 𝑣) = 𝑐𝑢 + 𝑐𝑣

We will instead mostly use the definition of vector subspace. Indeed, it is much easier to verify that a subset is a
vector space when it is already included in a vector space: the main properties of the addition and multiplication by a
scalar are already verified!

Let 𝑊 be a vector space. A vector subspace 𝑉 ⊂ 𝑊 is a set that satisfies: for all 𝑣1, 𝑣2 ∈ 𝑉 and all 𝑐 ∈ ℝ,
1. 0⃗ ∈ 𝑉 ,
2. 𝑣1 + 𝑣2 ∈ 𝑉 , and
3. 𝑐𝑣1 ∈ 𝑉

(where 0⃗, the addition and multiplication are those of 𝑊 ). In other words, the subspace is a vector subspace is stable
by linear combinations. The first axiom is a condition of the last one if the set is not empty, but it is very easy to forget
it! For instance, the line of equation 3𝑥 + 4𝑦 = 1 is not a vector subspace because (0, 0) is not inside it. This should
always be your first test to verify that a subset is a vector space.

The key point is: a vector subspace is a vector space. It just happens to be inside another.
Let 𝐴 ∈ ℝ𝑝×𝑞 , then the nullspace 𝑁(𝐴) is a vector subspace of ℝ𝑞 , and the column space 𝐶(𝐴) is a vector subspace

of ℝ𝑝.
The dimension of a vector space is the number of a vector in a basis. It is the largest possible number of vectors in

a linearly independent family, and the smallest possible number of vectors required to span the whole space.

11.2 Linear maps
We call linear maps the operations from one vector space to another that respect linear combinations.
A map 𝑓 ∶ 𝑉 → 𝑊 between vector spaces is linear if for all 𝑣1, 𝑣2 ∈ 𝑉 and 𝑐 ∈ ℝ, one has:

1. 𝑓 (𝑣1 + 𝑣2) = 𝑓 (𝑣1) + 𝑓 (𝑣2), and
2. 𝑓 (𝑐𝑣1) = 𝑐𝑓 (𝑣1).
This is satisfied by many operations you have learned about in calculus for instance. Another key example is the

following one: let 𝐴 ∈ ℝ𝑝×𝑞 . Then, the following map is linear:
𝑓 ∶ ℝ𝑞 → ℝ𝑝

�⃗� ↦ 𝐴�⃗�.

11.3 Linear maps and matrices
It turns out that any linear map between finite dimensional vector spaces can be represented by a matrix.
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11.3.1 From 𝑛-dimensional vector spaces to ℝ𝑛

Any basis of a vector space provides an identification with ℝ𝑛 as follows. Let 𝑉 be a vector space, and (𝑣1,… , 𝑣𝑛)be a basis of 𝑉 . Then, there is a direct one-to-one correspondence between vectors in 𝑉 and elements of ℝ𝑛:
𝑉 ↔ ℝ𝑛

𝑥1𝑣1+⋯ + 𝑥𝑛𝑣𝑛 ↦̃ (𝑥1,… , 𝑥𝑛).

This crucially tells us that intrinsically, all finite-dimensional vector spaces are the same and that understanding
ℝ𝑛 is enough to understand them all!

11.3.2 Matrices associated to a linear map

This correspondence extends to matrices.
To define the matrix associated to a linear map, we need to choose a basis in the starting space, and a basis in

the target space. Consider 𝑓 ∶ 𝑉 → 𝑊 , and bases (𝑣1,… , 𝑣𝑞) of 𝑉 , and (�⃗�1,… , �⃗�𝑝) of 𝑊 . Then, the matrix 𝐴
associated to 𝑓 in the bases (𝑣1,… , 𝑣𝑞), and (�⃗�1,… , �⃗�𝑝) is obtained as follows:

1. compute 𝑓 (𝑣1), … , 𝑓 (𝑣𝑞),
2. express them as linear combinations of the �⃗�𝑖: 𝑓 (𝑣𝑗) = 𝑎1𝑗�⃗�1 + 𝑎2𝑗�⃗�2 +⋯ + 𝑎𝑝𝑗�⃗�𝑝, and
3. define 𝐴 ∈ ℝ𝑝×𝑞 by 𝐴 = (𝑎𝑖𝑗)1⩽𝑖⩽𝑝,1⩽𝑗⩽𝑞 .
The point is that now, if �⃗� ∈ 𝑉 is equal to 𝑥1𝑣1 +⋯ + 𝑥𝑞𝑣𝑞 , then 𝐴(𝑥1,… , 𝑥𝑞) = (𝑦1,… , 𝑦𝑝) ∈ ℝ𝑝 lets us write

𝑓 (�⃗�) = 𝑦1�⃗�1 + 𝑦2�⃗�2 +⋯ + 𝑦𝑝�⃗�𝑝.

12 Linear maps and special operations
Having a more abstract approach to matrices lets one understand more conceptually what elimination and other

operations are really doing and why they work.

12.1 Image and kernel/nullspace of maps
Let 𝑓 ∶ 𝑉 → 𝑊 be a linear map. We define the image of 𝑓 as

Im(𝑓 ) = 𝑓 (𝑉 ) = {𝑓 (𝑣), 𝑣 ∈ 𝑉 } ⊂ 𝑊 .

Note that for 𝑓 ∶ �⃗� ↦ 𝐴�⃗�, Im(𝑓 ) = 𝐶(𝐴), the column space.
We similarly define the nullspace or kernel of 𝑓 as

ker(𝑓 ) = 𝑓−1({0}) = {𝑓 (𝑣), 𝑣 ∈ 𝑉 } ⊂ 𝑊 .

I am not a fan of the notation 𝑓−1({0}), 𝑓 might not be invertible, hence 𝑓−1 may not make sense – this is just a
notation. For 𝑓 ∶ �⃗� ↦ 𝐴�⃗�, Ker(𝑓 ) = 𝑁(𝐴), the nullspace.
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12.2 Changes of bases and changes of matrices
The process of elimination consisted of left multiplications by matrices. We may rephrase this as looking at the

same linear map but in different bases.
Denote (𝑣1, ..., 𝑣𝑞) and (�⃗�1, ..., �⃗�𝑝). The map 𝑓 ∶ �⃗� → 𝐴�⃗� has the matrix 𝐴 ∈ ℝ𝑝×𝑞 between (𝑣1, ..., 𝑣𝑞) and

(�⃗�1, ..., �⃗�𝑝). But between the bases (𝑣1, ..., 𝑣𝑞) and (𝐿�⃗�1, ..., 𝐿�⃗�𝑝) for some 𝐿 ∈ ℝ𝑝×𝑝, its matrix is 𝐿−1𝐴.
Note in particular that if 𝐴 ∈ ℝ𝑝×𝑝 is invertible, then the matrix of 𝐴 in the bases (𝑣1, ..., 𝑣𝑞) and (𝐴𝑣1, ..., 𝐴𝑣𝑝) is

the identity.
Elimination is a change of basis in the target space. Most matrix reductions we will encounter will be exactly about

choosing convenient bases in which to look at our linear maps.
A key point is that the spaces Im(𝑓 ) and ker(𝑓 ) do not depend on choices of bases. One can therefore choose the

most convenient bases for them.

13 Inner product, dot-product, adjoint transpose
An inner product is a generalization of the dot-product to more general vector spaces. Formally, an inner product

on 𝑉 is a function ⟨⋅, ⋅⟩ ∶ 𝑉 × 𝑉 → ℝ that satisfies the following properties:
1. Linearity in the first argument: ⟨𝑎𝑢 + 𝑏𝑣, �⃗�⟩ = 𝑎⟨𝑢, �⃗�⟩ + 𝑏⟨𝑣, �⃗�⟩ for all 𝑢, 𝑣, �⃗� ∈ 𝑉 and 𝑎, 𝑏 ∈ ℝ.
2. Symmetry: ⟨𝑢, 𝑣⟩ = ⟨𝑣, 𝑢⟩ for all 𝑢, 𝑣 ∈ 𝑉 .
3. Positivity: ⟨𝑢, 𝑢⟩ ≥ 0 for all 𝑢 ∈ 𝑉 .
4. Definiteness: ⟨𝑢, 𝑢⟩ = 0 ⟺ 𝑢 = 0⃗.

When a vector space is equipped with an inner product, it is commonly called Euclidean. This gives additional structure
to linear maps and matrices.

Our main examples of such spaces will be: ℝ𝑛 with the usual dot-product, and ℝ𝑝×𝑞 with the operation
⟨𝐴,𝐵⟩ℝ𝑝×𝑞 = tr(𝐴𝑇𝐵) = tr(𝐴𝑇𝐵) =

∑

𝑖𝑗
𝐴𝑖𝑗𝐵𝑖𝑗 ,

where the tr operation is the sum of the diagonal terms.
We may then measure the length of a vector �⃗� as √⟨�⃗�, �⃗�⟩.

13.1 Orthonormal bases
An orthogonal basis (𝑣1,… , 𝑣𝑛) satisfies for all 𝑖 ≠ 𝑗 ∈ {1,… , 𝑛},

⟨𝑣𝑖, 𝑣𝑗⟩ = 0,

it is orthonormal if it additionally satisfies ⟨𝑣𝑖, 𝑣𝑖⟩ = 1.
Orthonormal bases are the most convenient ones to compute dot-products: if �⃗� and 𝑦 respectively have coordinates

(𝑥1,… , 𝑥𝑛) and (𝑦1,… , 𝑦𝑛) in an orthonormal basis (𝑣1,… , 𝑣𝑛), then
⟨�⃗�, 𝑦⟩ = 𝑥1𝑦1 +⋯ + 𝑥𝑛𝑦𝑛.
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13.2 Adjoint of a linear map and transpose of a matrix
Consider 𝑓 ∶ 𝑉 → 𝑊 where (𝑉 , ⟨⋅, ⋅⟩𝑉 ) and (𝑊 , ⟨⋅, ⋅⟩𝑊 ) are Euclidean. There is a unique linear map 𝑓 ∗ defined

by the property: ∀�⃗� ∈ ℝ𝑞 , 𝑦 ∈ ℝ𝑝

⟨𝑓 (�⃗�), 𝑦⟩𝑊 = ⟨�⃗�, 𝑓 ∗(𝑦)⟩𝑉 . (1)
The linear map 𝑓 ∗ ∶ 𝑊 → 𝑉 is called the adjoint of 𝑓 . If 𝐴 ∈ ℝ𝑝×𝑞 is the matrix associated to 𝑓 between
orthonormal bases, then the matrix associated to 𝑓 ∗ is 𝐴𝑇 ∈ ℝ𝑞×𝑝 defined as follows: if 𝐴 = (𝑎𝑖𝑗)1⩽𝑖⩽𝑝,1⩽𝑗⩽𝑞 ∈ ℝ𝑝×𝑞 ,
then

𝐴𝑇 = (𝑎𝑗𝑖)1⩽𝑖⩽𝑝,1⩽𝑗⩽𝑞 ∈ ℝ𝑞×𝑝

it is called the transpose of 𝐴 (sometimes adjoint too). It corresponds to replacing columns and rows – or a reflection
along the line 𝑥 = −𝑦.

Some properties: (𝐴𝑇 )𝑇 = 𝐴, (𝐴 + 𝐵)𝑇 = 𝐴𝑇 + 𝐵𝑇 , (𝐴𝐵)𝑇 = 𝐵𝑇𝐴𝑇 , (𝐴−1)𝑇 = (𝐴𝑇 )−1 (and the associated
operations for 𝑓 ).

The transpose lets one rewrite the dot-product: for �⃗�, 𝑦 ∈ ℝ𝑛:
�⃗� ⋅ 𝑦 = �⃗�𝑇 𝑦 = 𝑦𝑇 �⃗�,

where by vector, we mean column vectors in ℝ𝑛. Note for instance that for any matrix 𝐴, one has the useful identity
(compare with (1)):

(𝐴�⃗�) ⋅ 𝑦 = (𝐴�⃗�)𝑇 𝑦 = �⃗�𝑇 (𝐴𝑇 𝑦) = �⃗� ⋅ (𝐴𝑇 𝑦).

13.3 Self-adjoint operators and symmetric matrices
A linear map 𝑓 ∶ ℝ𝑝 → ℝ𝑝 is called self-adjoint if 𝑓 = 𝑓 ∗. This corresponds to its associated matrix being

symmetric: 𝐴 = 𝐴𝑇 .
For any matrix 𝐵 ∈ ℝ𝑝×𝑞 , the matrices 𝐵𝑇𝐵 ∈ ℝ𝑞×𝑞 and 𝐵𝐵𝑇 ∈ ℝ𝑝×𝑝 are symmetric. Moreover, one always has:

(𝐵�⃗�) ⋅ (𝐵𝑦) = (𝐵�⃗�)𝑇 (𝐵𝑦) = �⃗�𝑇 (𝐵𝑇𝐵)𝑦.

Note that (�⃗�, 𝑦) ↦ �⃗�𝑇 (𝐵𝑇𝐵)𝑦 is also an inner product that may differ from the dot product. This is the effect a change
of basis can have on the dot product.

14 Orthogonal subspaces and “fundamental theorem” part 2

14.1 The four subspaces
The four fundamental subspaces of a matrix 𝐴 ∈ ℝ𝑝×𝑞 are the following:

1. the nullspace 𝑁(𝐴) ∈ ℝ𝑞 ,
2. the column space 𝐶(𝐴) ∈ ℝ𝑝,
3. the nullspace 𝑁(𝐴𝑇 ) ∈ ℝ𝑝, and
4. the column space 𝐶(𝐴𝑇 ) ∈ ℝ𝑞 .
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14.2 Orthogonal subspaces
In a vector subspace equipped with an inner product ⟨⋅, ⋅⟩, we say that two linear subspaces 𝑊1 and 𝑊1 if for any

𝑤1 ∈ 𝑊1 and 𝑤2 ∈ 𝑊2, one has ⟨𝑤1, 𝑤2⟩ = 0. We will denote this relationship by 𝑊1 ⟂ 𝑊2, just like we write
𝑤1 ⟂ 𝑤2 for orthogonal vectors.

The intersection of orthogonal subspaces is always {0}.
Given a linear subspace 𝑊 ⊂ 𝑉 , we define its orthogonal complement 𝑊 ⟂ as the set of vectors orthogonal to all

the vectors in 𝑊 . One obtains an orthogonal direct sum: 𝑉 = 𝑊
⟂
⊕𝑊 ⟂ meaning that for any vector 𝑣 ∈ 𝑉 , there

exist unique vectors 𝑣𝑊 ∈ 𝑊 , and 𝑣⟂ ∈ 𝑊 ⟂ such that: 𝑣 = 𝑣𝑊 + 𝑣⟂. This decomposition is unique, and we call 𝑣𝑊and 𝑣⟂ the orthogonal projections of 𝑣 on 𝑊 and 𝑊 ⟂. They define linear maps: also called orthogonal projections

𝜋𝑊 ∶ 𝑉 → 𝑊 ,
𝑣 ↦ 𝑣𝑊 ,

and 𝜋𝑊 ⟂ ∶ 𝑉 → 𝑊 ⟂,
𝑣 ↦ 𝑣⟂.

Note that we always have (𝑊 ⟂)⟂ = 𝑊 and that dim𝑉 = dim𝑊 + dim𝑊 ⟂. A nice example of orthogonality for
instance is that symmetric matrices satisfying 𝐴 = 𝐴𝑇 are orthogonal to anti-symmetric matrices 𝐵 = −𝐵𝑇 .

14.3 Orthogonality of the four subspaces
The “second part of the fundamental theorem of linear algebra” is as follows, it adds one property: for a matrix

𝐴 ∈ ℝ𝑝×𝑞 of rank 𝑟.
Theorem 14.1. One has dim𝐶(𝐴) = dim𝐶(𝐴𝑇 ) = 𝑟: “the dimension of the image is the rank” Similarly, dim𝑁(𝐴) =
𝑞 − 𝑟 and dim𝑁(𝐴𝑇 ) = 𝑝 − 𝑟: “the codimension of the kernel is the rank” because:

𝑁(𝐴) = 𝐶(𝐴𝑇 )⟂ ∈ ℝ𝑞 , and 𝐶(𝐴) = 𝑁(𝐴𝑇 )⟂ ∈ ℝ𝑝.

In the context of linear maps, it states the very general fact that the image of 𝑓 is the orthogonal complement of
the kernel of its adjoint 𝑓 ∗.

14.4 Existence of solutions

Remember that we have a solution to 𝐴�⃗� = �⃗� if and only if �⃗� ∈ 𝐶(𝐴). However, it can be tedious to compute 𝐶(𝐴)
which is the span of vectors, while computing a nullspace is often easier. Another criterion is the following:
Theorem 14.2. There is a solution to 𝐴�⃗� = �⃗� if and only if �⃗� ⟂ 𝑁(𝐴𝑇 ).

15 Least squares approximations

When a linear equation 𝐴�⃗� = �⃗� cannot be solved, i.e. when �⃗� ∉ 𝐶(𝐴), one still searches the “best” �⃗�∗ or the closest
to a solution one can find.

These situations occur all the time, and often there is solution by design. One wants to summarize a complicated
data set by something much simpler, the goal is not to match exactly every data point–what would be an actual solution–
but rather to find the closest simple summary of the situation. The “best” �⃗�∗ depends on a loss function that we set to
measure how far we are to an actual solution.
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15.1 Typical setup
We will use the mean squared error as our loss function: it leads us to search �⃗�∗ minimizing the (Euclidean)

distance between 𝐴�⃗� and �⃗�.
In data science and statistics, the problem 𝐴�⃗� = �⃗� commonly corresponds to:
• the rows of 𝐴 ∈ ℝ𝑝×𝑞 correspond to the measures from different samples,
• the columns correspond to the measures of specific features,
• the components of �⃗� are the outcomes of each sample, and
• the components of �⃗� are the weights allocated to each feature.

The goal is to learn the vector of weights �⃗� that best summarizes the law: features observed on sample (𝑖)⟶ outcome
in sample (𝑖). We measure it by searching for �⃗� minimizing dist(𝐴�⃗�, �⃗�) or equivalently ‖𝐴�⃗�− �⃗�‖2 = ⟨𝐴�⃗�− �⃗� , 𝐴�⃗�− �⃗�⟩.

A nice way to think of the i𝑡ℎ component of �⃗� is the following. If a feature is increased by 1, then, the outcome is
changed by 𝑥𝑖.

15.2 How to solve in practice
One typically has many more samples than features measured, so the matrix 𝐴 is in practice very tall and thin, i.e.

𝑞 ≪ 𝑝. In this context, 𝐶(𝐴)–the set of �⃗� for which the equation can be solved–is at most 𝑞-dimensional in the much
larger 𝑝-dimensional ambient space: almost no equation 𝐴�⃗� = �⃗� can be solved. Instead, we turn to the minimization
problem:

min
𝑥∈ℝ𝑞

‖𝐴�⃗� − �⃗�‖2.

There, one can take different, but equivalent approaches:
1. multivariable calculus tells us that the minimizer should satisfy 𝐴𝑇𝐴�⃗�∗ = 𝐴𝑇 𝑦, so if 𝐴𝑇𝐴 is invertible, we

take �⃗�∗ = (𝐴𝑇𝐴)−1𝐴𝑇 𝑦, here (𝐴𝑇𝐴)−1 ∈ ℝ𝑞×𝑞 with 𝑞 the number of features so inverting it by elimination for
instance does not cost that much,

2. if there are too many features (and for more difficult loss functions), one would run a gradient descent on the
function �⃗� ↦ ‖𝐴�⃗� − �⃗�‖2, where for 𝐿(�⃗�) ∶= ‖𝐴�⃗� − �⃗�‖2 one computes that ∇𝐿(�⃗�) = 2𝐴𝑇𝐴�⃗� − 2𝐴𝑇 𝑦, and

3. geometrically, by the Pythagorean theorem, 𝐴�⃗�∗ should be the orthogonal projection of �⃗� on 𝐶(𝐴), and we will
see that this leads again to the formula �⃗�∗ = (𝐴𝑇𝐴)−1𝐴𝑇 𝑦.

15.3 The linear algebra behind the method
Let us focus on the last point above. By the second part of the “fundamental theorem” of linear algebra, we have

the following orthogonal direct sum:
ℝ𝑝 = 𝐶(𝐴)

⟂
⊕𝑁(𝐴𝑇 ),

so �⃗� decomposes uniquely as
�⃗� = 𝑝 + 𝑒, for 𝑝 ∈ 𝐶(𝐴), and 𝑒 ∈ 𝑁(𝐴𝑇 ).

We call 𝑝 the projection of �⃗� onto 𝐶(𝐴), and 𝑒, the error, i.e. what measures how far we are to 𝐶(𝐴). Indeed, the
Pythagorean theorem tells us that for any �⃗� ∈ 𝐶(𝐴), one has:

‖�⃗� − 𝐴�⃗�‖2 = ‖𝑝 − 𝐴�⃗�‖2 + ‖𝑒‖2,

where ‖𝑒‖2 is fixed, but where one may choose �⃗� = �⃗�∗ such that 𝑝 = 𝐴�⃗�∗ because 𝑝 ∈ 𝐶(𝐴). In order to make this �⃗�∗
unique, one may additionally impose that �⃗�∗ ∈ 𝐶(𝐴𝑇 ) = 𝑁(𝐴)⟂.
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16 Linear regression, and vector projections

16.1 Linear regression
A very common situation is that of a cloud of points in ℝ2 that we want to fit with a straight line. This is linear

regression, which is a particular case of least squares approximation.
We are given couples (𝑡1, 𝑦1),… , (𝑡𝑛, 𝑦𝑛) corresponding to the coordinates of the points. Our linear system would

ideally correspond to finding a line 𝑦 = 𝐶𝑥+𝐷 through its slope coefficient 𝐶 and the constant 𝐷 that passes through
all of the (𝑡𝑖, 𝑦𝑖), that is solves the system of 𝑛 equations 𝑦𝑖 = 𝐶𝑡𝑖 +𝐷 for all 𝑖 ∈ {1,… , 𝑛}. This rarely has a solutions,
so one instead wants to make the line as close to the set of points (𝑡𝑖, 𝑦𝑖)𝑖 as possible through:

𝑚𝑖𝑛𝐶,𝐷

𝑛
∑

𝑖=1

(

𝑦𝑖 − (𝐶𝑡𝑖 +𝐷)
)2 .

If one denotes �⃗� = (𝐶,𝐷), �⃗� = (𝑦1,… , 𝑦𝑛) and 𝐴 =
⎡

⎢

⎢

⎣

𝑡1 1
… …
𝑡𝑛 1

⎤

⎥

⎥

⎦

, one recovers the previous least squares approxi-
mation setting.

One then computes 𝐴𝑇𝐴 =
[
∑

𝑖 𝑡
2
𝑖

∑

𝑖 𝑡𝑖
∑

𝑖 𝑡𝑖 𝑛

]

, and 𝐴𝑇 �⃗� =
[
∑

𝑖 𝑡𝑖𝑦𝑖
∑

𝑖 𝑦𝑖

]

so that the solution (𝐶,𝐷) must satisfy
[
∑

𝑖 𝑡
2
𝑖

∑

𝑖 𝑡𝑖
∑

𝑖 𝑡𝑖 𝑛

] [

𝐶
𝐷

]

=
[
∑

𝑖 𝑡𝑖𝑦𝑖
∑

𝑖 𝑦𝑖

]

.

We can always solve this except if all of the 𝑡𝑖 are equal, since we know the formula for the inverse of a 2 × 2 matrix.

16.2 A trick

A trick however simplifies the solution: if the 𝑡𝑖 are centered, i.e. if ∑𝑖 𝑡𝑖 = 0, then 𝐴𝑇𝐴 =
[
∑

𝑖 𝑡
2
𝑖 0

0 𝑛

]

, and the
solution is obviously

𝐶 =
∑𝑛

𝑖=1 𝑦𝑖𝑡𝑖
∑𝑛

𝑖=1 𝑡
2
𝑖

, and 𝐷 = 1
𝑛

𝑛
∑

𝑖=1
𝑦𝑖,

where one recognizes the 1
𝑛
∑𝑛

𝑖=1 𝑦𝑖 is the mean or expected value of (𝑦1,… , 𝑦𝑛), as well as the covariance 1
𝑛
∑𝑛

𝑖=1 𝑦𝑖𝑡𝑖
between (𝑡𝑖)𝑖 and (𝑦𝑖)𝑖 (which is an inner product!) and the variance 1

𝑛
∑𝑛

𝑖=1 𝑡
2
𝑖 (which is a norm squared!).

The simplest method often becomes the following one (that extends to higher dimensions). Given (𝑡1, 𝑦1),… , (𝑡𝑛, 𝑦𝑛),
1. Compute the average 𝑡 = 1

𝑛
∑𝑛

𝑗=1 𝑡𝑗

2. you first center the data by defining 𝑇𝑖 = 𝑡𝑖 − �̄�,
3. you can then solve the problem for the set of points (𝑇𝑖, 𝑦𝑖):

𝐶 =
∑𝑛

𝑖=1 𝑦𝑖𝑇𝑖
∑𝑛

𝑖=1 𝑇
2
𝑖

, and 𝐷 = 1
𝑛

𝑛
∑

𝑖=1
𝑦𝑖,

4. the best line fitting (𝑡1, 𝑦1),… , (𝑡𝑛, 𝑦𝑛) is then
𝐶(𝑡 − 𝑡) +𝐷.
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Remark 16.1. We will see that this “centering” of the data can be seen as an orthogonalization of the matrix 𝐴.

Remark 16.2. In the context of finance, the “𝛽” measures the sensitivity of a stock’s returns to the overall market
returns. It is essentially the slope coefficient 𝐶 in a linear regression model between a stock’s returns and the average
market’s returns. Using least squares, you find the best-fitting line that describes this relationship, and the 𝛽 quantifies
how much the stock is expected to move relative to the market. If 𝛽 > 1, then the stock is very influenced by the market,
and if 𝛽 < 1, it is relatively not impacted by overall market movements.

In a similar way, one can fit more complicated functions to a set of points. One may fit some polynomial, expo-
nential, logarithm etc depending on the context.

16.3 Vector projection
16.3.1 Projection on a line

When �⃗� ∈ ℝ𝑝 is a vector that you want to project on the line generated by 𝑎 ≠ 0, the orthogonal projection 𝑝 of �⃗�
on 𝑎 is:

𝑝 = 𝑎 ⋅ �⃗�
‖𝑎‖2

𝑎 = 𝑎𝑇 �⃗�
𝑎𝑇 𝑎

𝑎 =
(

(𝑎𝑇 𝑎)−1𝑎𝑇 �⃗�
)

𝑎.

This recovers our formula �⃗�∗ = (𝑎𝑇 𝑎)−1𝑎𝑇 �⃗� for the solution of the least squares.
The projection on the orthogonal of the line is then 𝑒 = �⃗� − 𝑝 and one recovers the direct sum decomposition

�⃗� = 𝑒 + 𝑝 with 𝑒 ⟂ 𝑝.

16.3.2 Projection on a subspace

Consider a subspace spanned by (𝑎1,… , 𝑎𝑞) inside ℝ𝑝 and the matrix 𝐴 ∈ ℝ𝑝×𝑞 whose columns are (𝑎1,… , 𝑎𝑞).
The subspace spanned by (𝑎1,… , 𝑎𝑞) is exactly the column space of 𝐴, 𝐶(𝐴). We want to project �⃗� on this subspace.

It is often easier to check that the vector 𝑒 = �⃗� − 𝑝 in the orthogonal of 𝐶(𝐴) or is equivalently in 𝑁(𝐴𝑇 ). This
corresponds to the equations 𝑎𝑇𝑖 𝑒 = 𝑎𝑇𝑖 (�⃗�− 𝑝) = 0 for 𝑖 ∈ {1,… , 𝑞} or equivalently 𝐴𝑇 𝑒 = 𝐴𝑇 (�⃗�− 𝑝) = 0. If we force
𝑝 = 𝐴�⃗� (i.e. 𝑝 ∈ 𝐶(𝐴)), we recover the previous formula when 𝐴𝑇𝐴 is invertible,

𝑝 = 𝐴(𝐴𝑇𝐴)−1𝐴𝑇 �⃗�.

The matrix 𝑃 = 𝐴(𝐴𝑇𝐴)−1𝐴𝑇 ∈ ℝ𝑝×𝑝 is an orthogonal projection matrix onto 𝐶(𝐴). Projection matrices are
characterized by the property

𝑃 2 = 𝑃 ,

and they are orthogonal if they additionally satisfy 𝑃 𝑇 = 𝑃 or equivalently if 𝑁(𝑃 ) ⟂ 𝐶(𝑃 ).

17 Gram-Schmidt orthonormalization

In all of the above methods, the bottleneck is often computing the inverse (𝐴𝑇𝐴)−1. However, if 𝐴 is expressed in
a “nice” enough basis, we will see that we always have 𝐴𝑇𝐴 = I𝑞 .

17.1 Orthonormal bases and matrices
Recall that an orthogonal basis (𝑣1,… , 𝑣𝑛) satisfies for all 𝑖 ≠ 𝑗 ∈ {1,… , 𝑛},

⟨𝑣𝑖, 𝑣𝑗⟩ = 0, and ⟨𝑣𝑖, 𝑣𝑖⟩ = 1.
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We will be interested in matrices with orthonormal columns. Such a matrix 𝑄 ∈ ℝ𝑝×𝑞 satisfies exactly
𝑄𝑇𝑄 = I𝑞 .

One extremely important feature of matrices with orthogonal columns is that they preserve the dot product, that
is, for any �⃗�, 𝑦 ∈ ℝ𝑞 , one has

(𝑄�⃗�) ⋅ (𝑄𝑦) = �⃗� ⋅ 𝑦
where we will note that the first dot-product is in ℝ𝑝 and the second in ℝ𝑞 .

If (and only if) 𝑝 = 𝑞, i.e. the matrix is square, we call this matrix orthogonal and we find the relationship
𝑄−1 = 𝑄𝑇 .

Permutation matrices and rotation matrices are orthogonal.

17.2 Gram-Schmidt process
The Gram-Schmidt process is an algorithm which produces an orthonormal basis (𝑐1,… , 𝑐𝑛), from any basis

(𝑎1,… , 𝑎𝑛). The steps are as follows:
• choose a first element 𝑎1 of your basis, define

�⃗�1 = 𝑎1,

• choose a second one 𝑎2 and only consider its part that is orthogonal to �⃗�1, i.e. define

�⃗�2 ∶= 𝑎2 −
�⃗�𝑇1 𝑎2

�⃗�𝑇1 �⃗�1
�⃗�1,

• choose a third vector 𝑎3 of your basis and only consider its part that is orthogonal to �⃗�1 and �⃗�2, i.e. define

�⃗�3 ∶= 𝑎3 −
�⃗�𝑇1 𝑎3

�⃗�𝑇1 �⃗�1
�⃗�1 −

�⃗�𝑇2 𝑎3

�⃗�𝑇2 �⃗�2
�⃗�2,

• iterate until done for all vectors of the basis, you obtain an orthogonal basis (�⃗�1,… , �⃗�𝑛),
• to further make the basis orthonormal, define 𝑐𝑖 =

�⃗�𝑖
‖�⃗�𝑖‖

.
Again, a change of basis lets us understand a matrix better.

17.3 𝑄𝑅 decomposition
And again, this change of basis can be understood as a matrix decomposition. This is the 𝐴 = 𝑄𝑅 decomposition.

The operations we made on the vectors 𝑎𝑖 to reach the vectors 𝑐𝑖 always corresponded to linear combinations of the
columns of a matrix 𝐴 whose columns are the 𝑎𝑖. This means that we were multiplying from the right by some matrix
𝑅 ∈ ℝ𝑞×𝑞 .

If we look more carefully, we see that the matrix 𝑅 is additionally upper triangular. This can also be seen as
follows: since 𝑄𝑇𝑄 = I𝑞 , from 𝐴 = 𝑄𝑅, we find

𝑅 = 𝑄𝑇𝐴.

The matrix 𝑅 is then upper triangular and if 𝑄 has columns 𝑞1,… , 𝑞𝑞 its coefficient 𝑖, 𝑗 is equal to
𝑞𝑖 ⋅ 𝑎𝑗

They vanish if 𝑖 > 𝑗 by construction.
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18 Simplifications with orthonormal bases

18.1 Least squares approximation
Let us come back to the least squares problem: for 𝐴 ∈ ℝ𝑝×𝑞 ,

min
�⃗�

‖𝐴�⃗� − �⃗�‖2.

18.2 If 𝑄 has orthogonal columns
If the columns of 𝑄 form an orthonormal family of vectors, then one still has (𝑄𝑇𝑄)−1 = I𝑞 , and we find

�⃗�∗ = (𝑄𝑇𝑄)−1𝑄𝑇 �⃗� = 𝑄𝑇 �⃗�.

18.2.1 In general

In general Gram-Schmidt procedure obtains a matrix 𝑄 as elementary operations on the columns of 𝐴, and gives
𝑄 = 𝐴𝑅−1

for 𝑅 ∈ ℝ𝑞×𝑞 upper triangular.
This simplifies drastically the least squares approximation. Indeed, one finds𝐴𝑇𝐴�⃗�∗ = 𝐴𝑇 �⃗� becomes𝑅𝑇𝑄𝑇𝑄𝑅�⃗� =

𝑅𝑇𝑄𝑇 �⃗�. Since 𝑄 is orthogonal and 𝑅 invertible, this is equivalent to:
𝑅�⃗� = 𝑄𝑇 �⃗�.

It is a simple system to solve since 𝑅 is triangular!

18.3 Projections

Recall that the projection of �⃗� on the subspace 𝐶(𝐴) was as follows (when 𝐴 had linearly independent columns):
𝑝 = 𝐴(𝐴𝑇𝐴)−1𝐴𝑇 �⃗�.

18.3.1 When 𝐴 has orthonormal columns

If 𝑄 has orthonormal columns, then, (𝑄𝑇𝑄)−1 = I𝑞 , and we find
𝑝 = 𝑄𝑄𝑇 �⃗�.

We also verify that 𝑃 = 𝑄𝑄𝑇 is a projection matrix since it satisfies 𝑃 2 = 𝑃 .

18.3.2 In general

In general, after Gram-Schmidt orthonormalization, we obtain𝐴 = 𝑄𝑅which simplifies the formula 𝑝 = 𝐴(𝐴𝑇𝐴)−1𝐴𝑇 �⃗�
as:

𝑝 = 𝑄𝑅(𝑅𝑇 (𝑄𝑇𝑄)𝑅)−1𝑅𝑇𝑄𝑇 �⃗�

= 𝑄𝑅𝑅−1(𝑅𝑇 )−1𝑄𝑇 �⃗�

= 𝑄𝑄𝑇 �⃗�.

Notice that it does not depend on 𝑅. Indeed, this is a projection on a subspace: it is geometric. It means that it should
not depend on the basis we take: it is the same formula with the columns of 𝐴 or the columns of 𝑄.

25



Remark 18.1. The above denominations are confusing. A square matrix with orthonormal columns is called or-
thogonal.

A matrix with orthonormal columnns satisfyies 𝑄𝑇𝑄 = I𝑞 while for a matrix with orthogonal columns, 𝑄𝑇𝑄 is
only diagonal.

19 Determinant
The determinant is a scalar value that can be computed from a square matrix and encapsulates various properties

of the matrix. It is denoted as det(𝐴) or |𝐴| for a square matrix 𝐴.

19.1 Formulas for the determinant in dimensions 2 and 3
For a 2 × 2 matrix

𝐴 =
[

𝑎 𝑏
𝑐 𝑑

]

,

the determinant is given by
det(𝐴) = 𝑎𝑑 − 𝑏𝑐.

For a 3 × 3 matrix
𝐴 =

⎡

⎢

⎢

⎣

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

⎤

⎥

⎥

⎦

,

the determinant is
det(𝐴) = 𝑎(𝑒𝑖 − 𝑓ℎ) − 𝑏(𝑑𝑖 − 𝑓𝑔) + 𝑐(𝑑ℎ − 𝑒𝑔).

19.2 Defining properties of determinant
The determinant function has several defining properties:

1. Identity matrix: The determinant of the identity matrix is 1.
det(𝐼) = 1

2. Row exchange: Exchanging two rows of 𝐴 negates det(𝐴).
det(𝐴′) = − det(𝐴)

3. Determinant and linearity: The determinant is a linear function of each row when others are held constant.
det(𝑎1�⃗�1 + 𝑎2�⃗�2, �⃗�3,… , �⃗�𝑛) = 𝑎1 det(�⃗�1, �⃗�3,… , �⃗�𝑛) + 𝑎2 det(�⃗�2, �⃗�3,… , �⃗�𝑛)

19.3 Other important properties
4. If two rows are equal, then det 𝐴 = 0.

5. Subtracting a row to another leaves det unchanged.
6. A row of zeros gives zero: det 𝐴 = 0 if 𝐴 has a row of zeros.
7. If 𝐴 is triangular, then det(𝐴) is the product of diagonal entries: det(𝐴) = 𝑎11 × 𝑎22 ×⋯ × 𝑎𝑛𝑛
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8. det(𝐴) ≠ 0 iff 𝐴 is invertible.

9. Multiplicative property: det(𝐴𝐵) = det(𝐴) det(𝐵)

10. Transpose property: det(𝐴𝑇 ) = det(𝐴).

That last property tells us that all of the previous properties that we prove about row operations can also be performed
on columns with analogue conclusions!

20 Permutations and cofactors
From the above properties 7. and 9., we see that the 𝐴 = 𝐿𝑈 decomposition is a way to compute the determinant

of 𝐴. If the diagonal terms in 𝑈 are 𝑑1,… , 𝑑𝑝, then determinant of 𝐴 is the product 𝑑1… 𝑑𝑝.Permutations of rows multiply the determinant by −1, so permutations in the elimination process also works.
This is however typically overkill, and we present another method today.

20.1 Determinants and pivots
One simple but deep observation is that when applying the elimination process to a matrix 𝐴, the first 𝑘 pivots only

depend on the matrix entries 𝑎𝑖𝑗 for 𝑖 ⩽ 𝑘, 𝑗 ⩽ 𝑘, i.e. the terms in the 𝑘 × 𝑘 matrix 𝐴𝑘 in the top-left corner of 𝐴.
We therefore obtain subdecompositions: 𝐴𝑘 = 𝐿𝑘𝑈𝑘 where 𝐿𝑘 and 𝑈𝑘 are respectively lower and upper triangular

𝑘 × 𝑘 matrices. In particular, det 𝐴𝑘 = 𝑑1… 𝑑𝑘 = 𝑑𝑘 det 𝐴𝑘−1, which yields (if the matrix 𝐴𝑘−1 is invertible):

𝑑𝑘 =
det 𝐴𝑘
det 𝐴𝑘−1

.

20.2 General formula for the determinant in terms of the entries of 𝐴
One may write a general but mostly useless in practice (but sometimes useful abstractly) formula for the determi-

nant:
det 𝐴 =

∑

permutation matrices 𝑃
𝑃 (1,…,𝑝)=(𝑏1,…,𝑏𝑝)

(det 𝑃 ) 𝑎1𝑏1𝑎2𝑏2 … 𝑎𝑝𝑏𝑝 .

20.3 Determinants and cofactors
Take a matrix 𝐴 ∈ ℝ𝑝×𝑝 and denote 𝐴𝑖𝑗 ∈ ℝ(𝑝−1)×(𝑝−1) the matrix obtained by removing the i𝑡ℎ row and j𝑡ℎ column

of 𝐴. We may write the determinant of 𝐴 in terms of the determinants of the smaller matrices 𝐴𝑖𝑗 . More precisely,
define the cofactors:

𝑐𝑖𝑗 ∶= (−1)𝑖+𝑗 det 𝐴𝑖𝑗 ,

then, if the first row is the simplest (more zeros, only small integers...) you may use:
det 𝐴 =

∑

𝑗
𝑎1𝑗𝑐1𝑗 .

If the i𝑡ℎ row is simpler, then use
det 𝐴 =

∑

𝑗
𝑎𝑖𝑗𝑐𝑖𝑗 .
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Remember the pattern

sign(−1)𝑖+𝑗 =

⎡

⎢

⎢

⎢

⎣

+ − + −
− + − +
+ − + −
− + − +

⎤

⎥

⎥

⎥

⎦

.

21 Determinants, cofactors and inverses
Determinants of well-chosen submatrices may be used to solve linear systems and compute inverses of matrices.

21.1 Solving linear systems by computing determinants

Consider 𝐴 ∈ ℝ𝑝×𝑝, �⃗�, �⃗� ∈ ℝ𝑝, and consider the linear system 𝐴�⃗� = �⃗�. We can directly write the solution in terms
of determinants obtained from specific matrices.

Consider the matrices 𝐵𝑗 such that all columns are equal to those of 𝐴 except the j𝑡ℎ column that is equal to �⃗�.
Define the matrices 𝐹𝑗 such that all columns are equal to those of I𝑝 except the j𝑡ℎ column that is equal to �⃗�. One

computes:
𝐴𝐹𝑗 = 𝐵𝑗 ,

and since a direct computation (from the j𝑡ℎ row) shows that det 𝐹𝑗 = 𝑥𝑗 , we find:
𝑥𝑗 det 𝐴 = det 𝐵𝑗 ,

and in particular, if 𝐴 is invertible, we obtain the formula

𝑥𝑗 =
det 𝐵𝑗

det 𝐴
,

determining all the coefficients of �⃗� at the cost of computing determinants. This technique is known as Cramer’s rule.
Note: Cramer’s rule is inefficient algorithmically on large general matrices as it requires many determinants. It

is however appealing theoretically. For instance, 𝐴 and �⃗� only have integer coefficients and if det 𝐴 = ±1, then, the
solution �⃗� only has integer coefficients.

21.2 Computing inverse matrices thanks to determinants
We also have a direct formula for the inverse of a matrix 𝐴 ∈ ℝ𝑝×𝑝. Denote 𝐶 the matrix of cofactors 𝑐𝑖𝑗 . One

has the general formula:
𝐴𝐶𝑇 = det 𝐴 I𝑝,

when 𝐴 is invertible, this yields the beautiful formula:
1

det 𝐴
𝐶𝑇 = 𝐴−1.

22 Eigenvalues and Eigenvectors
A 𝑝 × 𝑝 matrix 𝐴 often has preferred directions in which its action is simple. These are the eigenvectors of 𝐴.
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22.1 Definition
An eigenvector of a 𝑝 × 𝑝 matrix 𝐴 is a non-zero vector �⃗� such that 𝐴�⃗� = 𝜆�⃗� for some scalar 𝜆. The scalar 𝜆 is

called the eigenvalue corresponding to the eigenvector �⃗�.

22.2 Computing eigenvalues and eigenvectors
In some special cases, one can find eigenvalues and eigenvectors directly by inspection. For example, the identity

matrix has eigenvalue 1 for all vectors.
In other cases, a robust method is:

1. To find the eigenvalues, one can solve the characteristic equation det(𝐴 − 𝜆𝐼) = 0. The roots of this equation
are the eigenvalues.

2. Once an eigenvalue 𝜆 is found, the corresponding eigenvectors are in the nullspace of 𝐴 − 𝜆𝐼 . To find the
eigenvectors, solve (𝐴 − 𝜆𝐼)�⃗� = 0⃗.

22.3 Important properties
• The eigenvalues of a triangular matrix are simply its diagonal entries.
• The determinant of a matrix is equal to the product of its eigenvalues.
• The sum of the eigenvalues is equal to the trace of the matrix.
Some complications:

1. Gaussian elimination does not preserve eigenvalues or eigenvectors.
2. Eigenvalues may be complex numbers, even for real matrices.
3. Not all matrices have 𝑝 distinct eigenvalues or eigenvectors. Eigenvalues can have algebraic multiplicities

greater than 1, and this may complicate finding a basis of eigenvectors.

23 Diagonalizing a matrix

23.1 Diagonalization
Let 𝐴 ∈ ℝ𝑝×𝑝. To transform a matrix 𝐴 into a diagonal matrix 𝐷, one constructs the matrix 𝑆 whose columns are

eigenvectors. Then one finds 𝑆−1𝐴𝑆 = 𝐷, which is a diagonal matrix composed of the eigenvalues of 𝐴.
Important remarks: exchanging the order of eigenvectors in 𝑆 will correspondingly change the order of eigenval-

ues in the diagonal matrix 𝐷. If a matrix has 𝑝 distinct eigenvalues (a generic condition), it has a basis of eigenvectors
and can therefore be diagonalized.

23.2 Mistakes to avoid
It is critical to remember that some matrices are nondiagonalizable, which means they do not have a sufficient

number of distinct eigenvectors to form a basis. As such, no matrix 𝑆 of eigenvectors exists that can diagonalize them.
Furthermore, it is a common mistake to assume that the eigenvalues of 𝐴 + 𝐵 or 𝐴𝐵 can be easily inferred from

the eigenvalues of 𝐴 and 𝐵; this is not generally the case.
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23.3 Matrix powers
Diagonalization can be particularly useful for the fast computation of matrix powers. If a matrix𝐴 is diagonalizable,

one can compute high powers of 𝐴 efficiently:
𝐴𝑘 = 𝑆𝐷𝑘𝑆−1,

where 𝐷𝑘 is just the matrix whose diagonal entries are 𝑘𝑡ℎ powers of the entries of 𝐷.
Diagonalization simplifies the computation of sequences of vectors defined by a recurrence relation such as 𝑢𝑘+1 =

𝐴𝑢𝑘, since it allows for leveraging the powers of a diagonal matrix.

24 Eigenvalues: Properties and Applications
An eigenspace is the set of eigenvectors associated with an eigenvalue plus zero. It is always a vector subset since

it is the nullspace of a matrix.

24.1 Determinant and Trace
The determinant of matrix 𝐴 ∈ ℝ𝑝×𝑝 with 𝑝 eigenvalues (counted with multiplicity as roots of the characteristic

polynomial) is the product of its eigenvalues,

det(𝐴) =
𝑝
∏

𝑖=1
𝜆𝑖 = 𝜆1 ×⋯ × 𝜆𝑝,

and the trace of 𝐴, which is the sum of its diagonal entries, is the sum of its eigenvalues,

tr(𝐴) =
𝑝
∑

𝑖=1
𝜆𝑖 = 𝜆1 +⋯ + 𝜆𝑝.

In particular, if one writes that the characteristic polynomial is
det(𝐴 − 𝑠 I𝑝) = (−1)𝑝𝑠𝑝 + 𝑎𝑝−1𝑠

𝑝−1 +⋯ + 𝑎1𝑠 + 𝑎0,

we find: 𝑎𝑝−1 = (−1)𝑝−1 tr(𝐴) and 𝑎0 = det(𝐴).
One also deduces an important formula: the derivative of a determinant is a trace. Geometrically, the derivative of

the volume can be seen as a trace. More concretely, define 𝑓 ∶ ℝ → ℝ, 𝑓 ∶ 𝑡 ↦ det(𝐼𝑝 + 𝑡𝐴), then 𝑓 is differentiable
(it is a polynomial) and one has:

𝑓 ′(0) = tr(𝐴).

More generally, for a differentiable family of invertible matrices 𝑡 ↦ 𝐴(𝑡), one finds:
𝑑
𝑑𝑡

det(𝐴) = det(𝐴) tr
(

𝐴−1 𝑑𝐴
𝑑𝑡

)

.

24.2 Symmetric Matrices
For any symmetric matrix 𝐴 ∈ ℝ𝑛×𝑛, all eigenvalues are real, and there exists an orthonormal basis of ℝ𝑛 consisting

of eigenvectors of 𝐴. This leads to a special form of diagonalization known as spectral decomposition,
𝐴 = 𝑄𝐷𝑄𝑇 ,

where 𝑄 is an orthogonal matrix whose columns are eigenvectors of 𝐴, and 𝐷 is a diagonal matrix of the eigenvalues.
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24.3 Eigenvalues and Matrix Functions
If 𝑓 ∶ ℝ → ℝ is a function, we can make sense of 𝑓 (𝐴) for 𝐴 diagonalizable real eigenvalues (if not diagonalizable,

one typically asks that 𝑓 is analytic) through
𝑓 (𝐴) = 𝑄𝑓 (𝐷)𝑄𝑇 ,

where 𝑓 (𝐷) means simply applying 𝑓 to each of the eigenvalues on the diagonal of 𝐷.

24.4 Applications of Eigenvalues
Eigenvalues play a crucial role in many areas, including:
• Differential Equations: Eigenvalues are used to solve systems of linear differential equations.
• Stability Analysis: In dynamical systems, the stability of an equilibrium point is often determined by the eigen-

values of the Jacobian matrix at that point.
• Principal Component Analysis (PCA): In statistics and machine learning, eigenvalues are used to determine

the principal components of a data set. The larger the eigenvalues of the covariance matrix, the more variance
there is in the associated eigenspaces.

• Quantum Mechanics: In physics, eigenvalues of self-adjoint linear maps (in infinite dimension) correspond to
the observable quantities in quantum mechanics.

• Ranking nodes of a graph: See PageRank algorithm (Page-Brin, Google’98) from Perron-Frobenius.

24.5 Non-Diagonalizable Matrices
Not all matrices are diagonalizable. Matrices that cannot be brought to a diagonal form are called non-diagonalizable.
Non-diagonalizable matrices occur when the geometric multiplicity (i.e. the dimension of the eigenspace) of an

eigenvalue is less than its algebraic multiplicity (i.e. its multiplicity as a root of the characteristic polynomial). In
other words, there are not enough linearly independent eigenvectors to form a basis of ℝ𝑛.

For such matrices, we can still achieve a form of diagonalization using Jordan’s decomposition the Jordan canon-
ical form, which is a block diagonal matrix where each block is called a Jordan block. A Jordan block associated with
an eigenvalue 𝜆 which is a matrix with 𝜆 in all of the diagonal entries, and a number of 1 and 0 on the "superdiagonal",
i.e. the entries just above the diagonal.

24.6 Cayley-Hamilton Theorem
Jordan’s decomposition relies on a beautiful and deep theorem.
The Cayley-Hamilton theorem is a fundamental result in linear algebra which states that every square matrix

𝐴 ∈ ℝ𝑛×𝑛 satisfies its own characteristic equation. If 𝑝(𝜆) = det(𝐴 − 𝜆𝐼) is the characteristic polynomial of 𝐴, then
𝑝(𝐴) = 0.

This means that if we substitute the matrix 𝐴 into its characteristic polynomial, the result is the zero matrix. This
theorem has practical applications in computing functions of matrices (like the matrix exponential) and in simplifying
expressions involving matrices.

For example, in dimension 2, for every possible matrix 𝐴 ∈ ℝ2×2, one has 𝑝(𝜆) = 𝜆2 − tr(𝐴)𝜆 + det(𝐴), so by the
Cayley-Hamilton theorem, 𝐴 satisfies

𝐴2 − tr(𝐴)𝐴 + det(𝐴)𝐼 = 0, or equivalently 𝐴2 = tr(𝐴)𝐴 − det(𝐴)𝐼.

This property can be used to compute higher powers of 𝐴 and inverse of 𝐴 (if it exists) by expressing them in terms
of 𝐴 and 𝐼 , reducing the computational complexity significantly for certain matrices.
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25 Exponential of a matrix and systems of ODEs
We have two equivalent definitions for the exponential of a matrix 𝑀 :

1. 𝑒𝑡𝑀 = 𝑌 (𝑡) is the unique solution to the ODE:
{𝑌 ′(𝑡) = 𝑀𝑌 (𝑡),

𝑌 (0) = I𝑝,

2. it is given by the sum:
𝑒𝑡𝑀 =

+∞
∑

𝑘=0

𝑡𝑘

𝑘!
𝑀𝑘.

It is an important definition since any solution of 𝑌 ′(𝑡) = 𝐴𝑌 (𝑡) is equal to
𝑌 (𝑡) = 𝑒(𝑡−𝑡0)𝐴𝑌 (𝑡0).

Computing the exponential of a diagonalizable matrix is simple from the second definition of a diagonalizable
matrix 𝐴 such that 𝐴 = 𝑆𝐷𝑆−1 for a diagonal matrix 𝐷:

𝑒𝑡𝐴 = 𝑆𝑒𝑡𝐷𝑆−1,

where if 𝐷 = 𝑑𝑖𝑎𝑔(𝜆1, ..., 𝜆𝑝), then 𝑒𝑡𝐷 = 𝑑𝑖𝑎𝑔(𝑒𝜆1𝑡, ..., 𝑒𝜆𝑝𝑡).
From the first definition, we can also say that if 𝐴𝑉𝑖 = 𝜆𝑖𝑉𝑖, then 𝑒𝑡𝐴𝑉𝑖 = 𝑒𝑡𝜆𝑖𝑉𝑖. This is especially useful when

solving ODEs: if 𝑌 (𝑡0) = ∑

𝑦𝑖𝑉𝑖, then the solution of the ODE is given by
𝑌 (𝑡) = 𝑒(𝑡−𝑡0)𝐴𝑌 (𝑡0) =

∑

𝑖
𝑒𝜆𝑖𝑡𝑦𝑖𝑉𝑖.

We have two simple and usual criteria implying that a matrix is diagonalizable.
Proposition 25.1. If 𝐴 ∈ ℝ𝑝×𝑝 has 𝑑 distinct eigenvalues, then it is diagonalizable.

(this implies that with probability 1 a random matrix is diagonalizable).
Proposition 25.2. If𝐴 ∈ ℝ𝑝×𝑝 is symmetric, then it is diagonalizable in an orthonormal basis and has real eigenvalues.

26 The Perron-Frobenius Theorem: Foundations and Applications

26.1 Perron-Frobenius Theorem for Positive Matrices
The Perron-Frobenius theorem asserts that for any square matrix with positive entries, there exists a unique

largest real eigenvalue, known as the Perron root, which is associated with a strictly positive eigenvector. Formally,
given a matrix 𝐴 ∈ ((0,+∞)])𝑝×𝑝, there exists 𝜆 > 0 and 𝑥 > 0 such that 𝐴𝑥 = 𝜆𝑥.

Properties of the Perron Root and Eigenvector:

• The Perron root is simple: its algebraic multiplicity is one.
• The associated eigenvector can be chosen to have all components positive.
• The Perron root dominates in magnitude: 𝜆 > |𝜇| for any other eigenvalue 𝜇 of 𝐴.
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26.2 Applications to Stochastic Matrices and PageRank
The Google PageRank algorithm is an application of the Perron-Frobenius theorem to stochastic matrices repre-

senting the web graph.
In this context, the internet may be represented as a graph: nodes are webpages and links are edges. If you think of

a person randomly clicking on links on each page, the question is: after a lot of clicks, what proportion of time will
they spend on each page? Each page’s rank (or importance) is determined by this steady-state probability distribution,
whose existence and uniqueness is a consequence of Perron-Frobenius theorem.

Stochastic Matrices and PageRank:

• A web graph’s adjacency matrix can be transformed into a stochastic matrix where each column sums to one,
making it suitable for PageRank.

• The largest eigenvalue of such a matrix is always 1 due to its stochastic nature.
• The corresponding eigenvector gives the steady-state probability distribution of someone randomly browsing–

guided by the , which is used to rank web pages.
The Perron-Frobenius theorem ensures the existence and uniqueness of the steady-state distribution.
Eigenvector Computation and Power Method: The computation of the PageRank vector (eigenvector associated

with eigenvalue 1) can be efficiently done: powers of the matrix converge. Starting from a generic initial vector �⃗�0,
a renormalization (so that the sum of the elements is 1) of the elements of the sequence �⃗�𝑛+1 = 𝐴�⃗�𝑛 converge to the
normalized eigenvector associated to the largest eigenvalue 1. Its coefficients represent the proportion of time spent at
each node of the graph if one follows the probability given by the edges.

27 Symmetric Matrices and Their Diagonalization
Symmetric matrices are fundamental in linear algebra and its applications. A matrix 𝐴 is symmetric if 𝐴 = 𝐴𝑇 ,

where 𝐴𝑇 denotes the transpose of 𝐴.

27.1 Diagonalization of Symmetric Matrices
A key property of symmetric matrices is that they are diagonalizable. This means that for a symmetric matrix

𝐴, there exists an orthogonal matrix 𝑄 and a diagonal matrix 𝐷 such that 𝐴 = 𝑄𝐷𝑄𝑇 . Here, 𝑄 is the matrix whose
columns are the elements of the orthonormal basis of eigenvectors.

Another important property is that all eigenvalues of a symmetric matrix are real. This is crucial for certain appli-
cations, like in optimization and quadratic forms.

Another property of symmetric matrices is that the signs of the pivots are the same as the signs of the eigenvalues.
Their values can however be very different!

27.2 Positive Definite Matrices
A symmetric matrix 𝐴 ∈ ℝ𝑝×𝑝 is positive definite if for any non-zero vector �⃗�, the quadratic form �⃗�𝑇𝐴�⃗� is positive.

Other characterizations are:
• the eigenvalues of 𝐴 are all positive,
• the pivots of 𝐴 are all positive,
• the determinants of the submatrices 𝐴𝑘 composed of the top left 𝑘 × 𝑘 components of 𝐴 are positive.
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For any invertible matrix 𝑅, the matrix 𝐴 = 𝑅𝑇𝑅 is positive since
�⃗�𝑇𝐴�⃗� = �⃗�𝑇𝑅𝑇𝑅�⃗� = (𝑅�⃗�)𝑇 (𝑅�⃗�) = ‖𝑅�⃗�‖2.

Conversely, any symmetric definite positive matrix 𝐴 can be written as 𝐴 = 𝑅𝑇𝑅 for 𝑅 invertible. Indeed, if 𝐴 =
𝑄𝐷𝑄𝑇 , then 𝐴 = 𝑅𝑇𝑅 = 𝑅2 for 𝑅 = 𝑄

√

𝐷𝑄𝑇 .
These matrices are crucial as they exhaust the possible inner products on ℝ𝑝: any Euclidean distance that fits your

problem will come from such a matrix.

27.3 Applications
Positive definite matrices have numerous applications in optimization, statistical estimation, and numerical analy-

sis. They guarantee the uniqueness and stability of solutions in various problems.
In the upcoming lectures, we will extend these concepts to more general matrices using the Singular Value De-

composition (SVD). SVD is a powerful tool in matrix analysis and has applications in data science, signal processing,
and more.

The starting point of this singular value decomposition of a (rectangular!) matrix 𝐴 ∈ ℝ𝑝×𝑞 is the above spectral
decomposition applied to the symmetric matrices 𝐴𝐴𝑇 ∈ ℝ𝑝×𝑝 and 𝐴𝑇𝐴 ∈ ℝ𝑞×𝑞 .

28 Singular Value Decomposition: Theory and Applications
Singular Value Decomposition (SVD) is a factorization of a matrix into three matrices, capturing essential geo-

metric and algebraic properties.

28.1 The SVD Theorem
For any matrix 𝑋 ∈ ℝ𝑝×𝑞 , there exist orthogonal matrices 𝑈 ∈ ℝ𝑝×𝑝, 𝑉 ∈ ℝ𝑞×𝑞 , and a diagonal matrix Σ ∈ ℝ𝑝×𝑞

such that
𝑋 = 𝑈Σ𝑉 𝑇 .

The diagonal entries of Σ are the singular values of 𝑋, and the columns of 𝑈 and 𝑉 are the left and right singular
vectors, respectively. We will require the terms in Σ to be nonnegative.

28.2 Connection to Eigendecomposition
SVD generalizes the concept of eigendecomposition from square matrices to rectangular ones. For symmetric

matrices, eigendecomposition is
𝐴 = 𝑄Λ𝑄𝑇 ,

whereas SVD of a general matrix 𝑋 is
𝑋 = 𝑈Σ𝑉 𝑇 .

This highlights the elegance of SVD in capturing the structure of a matrix.
The proof of the existence of this decomposition is based on the diagonalization in orthonormal bases (or spectral

decomposition) of the symmetric semidefinite matrices𝑋𝑇𝑋 and𝑋𝑋𝑇 . In fact, the columns of𝑈 form an orthonormal
basis of eigenvectors of 𝑋𝑇𝑋 while the columns of 𝑉 form an orthonormal basis of eigenvectors of 𝑋𝑋𝑇 .
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28.3 Truncated SVD
In many practical scenarios, a full SVD is not necessary. The truncated SVD uses only the largest 𝑘 singular val-

ues (and corresponding vectors), providing a good approximation of the original matrix. This approach is particularly
useful in applications like data compression and reduced-order modeling.

The intuition is that the large singular values are the most meaningful directions of the matrix action, and the rest
can be considered as negligible in some applications. Typically, if a matrix is sparse, it will have very few low singular
values which still capture the core behavior of the linear operation.

28.4 Numerical Computation
The computation of SVD can be efficiently done using iterative algorithms. Methods like the power method are em-

ployed to approximate the largest singular values and the associated singular vectors, especially in large-scale matrices
common in data science applications.

28.5 Applications of SVD
SVD has profound applications in various fields, including:
• Data Compression: SVD is used in image and signal processing for data compression and noise reduction.
• Machine Learning: In machine learning, SVD is used in algorithms like PCA for dimensionality reduction.
• Numerical Analysis: SVD aids in solving linear systems and in matrix inversion approximations.
• Natural Language Processing: In NLP, SVD is used for semantic analysis and building latent semantic indexing

models.
• Computer Graphics: SVD is pivotal in animations and graphics for transformations and decompositions.

29 SVD (continued)

29.1 Sum of matrices of rank 1
The SVD says that any matrix 𝐴 of rank 𝑟 is a weighted sum of normalized matrices of rank 1. The weights are the

nonzero singular values 𝜎1,..., 𝜎𝑟. If the left and right singular vectors associated to the 𝜎𝑖 are respectively the 𝑢𝑖 and
the 𝑣𝑖, then the normalized rank 1 matrices are 𝑢𝑖𝑣𝑇𝑖 . More concretely:

𝐴 = 𝜎1𝑢1𝑣
𝑇
1 +⋯ + 𝜎𝑟𝑢𝑟𝑣

𝑇
𝑟 .

29.2 Dimensional reduction
We have simplified a 𝑝 × 𝑞 matrix by 𝑟 matrices of rank 1, which already reduces quite drastically the complexity.
In practice, there are often singular values which are much larger than the others. They capture the main contribu-

tions of the matrix 𝐴.
One may consider that the small singular values are negligible and do not truly contribute. For instance, if the

singular values are ranked as 𝜎1 ⩾ 𝜎2 ⩾ ⋯ ⩾ 𝜎𝑟 one could say that the 𝜎𝑘 that are less than 0.001 × 𝜎1 (or something
more intelligent depending on 𝑟) are negligible. For instance, if 𝜎4 < 0.001 × 𝜎1 one may start from 𝐴 = 𝜎1𝑢1𝑣𝑇1 +
⋯ + 𝜎𝑟𝑢𝑟𝑣𝑇𝑟 and just keep the leading terms:

𝐴 ≈ 𝜎1𝑢1𝑣
𝑇
1 + 𝜎2𝑢2𝑣

𝑇
2 + 𝜎3𝑢3𝑣

𝑇
3 .
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29.3 Proving SVD
In order to prove SVD, one starts by diagonalizing the symmetric definite semi-positive matrix 𝑋𝑇𝑋 as:

𝑋 = 𝑄Λ𝑄𝑇 ,

with Λ = diag(𝜎21 ,… , 𝜎2𝑟 , 0,… , 0), and find 𝑉 = 𝑄 and Σ from the 𝜎𝑖 ⩾ 0.
From 𝑋𝑉 = 𝑈Σ, one then finds the columns 𝑢𝑖 from the 𝑣𝑖 and 𝜎𝑖 for 𝑖 ⩽ 𝑟–they are automatically orthonormal.

The 𝑢𝑖 for 𝑖 ⩾ 𝑟 + 1 can be freely chosen as long as they complete the orthonormal basis.
As an example of application, a matrix can be represented by scales of gray. One nice application of SVD is in

compressing images. In an image with thousands of components, often only the first few ones are the most meaningful
as you can see below.

30 Moore-Penrose Inverse: Concepts and Applications

30.1 Definition and Conditions
For a matrix 𝐴 ∈ 𝕂𝑚×𝑛, the Moore-Penrose pseudoinverse, denoted 𝐴+ ∈ 𝕂𝑛×𝑚, satisfies four conditions:

1. 𝐴𝐴+𝐴 = 𝐴.
2. 𝐴+𝐴𝐴+ = 𝐴+.
3. (𝐴𝐴+)𝑇 = 𝐴𝐴+.
4. (𝐴+𝐴)𝑇 = 𝐴+𝐴.
These conditions ensure that 𝐴+𝐴 is the orthogonal projection onto 𝐶(𝐴𝑇 ) = 𝑁(𝐴)⟂, and 𝐴𝐴+ is the orthogonal

projection onto 𝐶(𝐴). Indeed (𝐴+𝐴)2 = 𝐴+𝐴 and (𝐴𝐴+)2 = 𝐴𝐴+ and the matrices are orthogonal.

30.2 Linear map/Geometric point of view
The linear map associated to 𝐴 ∈ ℝ𝑝×𝑞 . Then, from the four fundamental subspaces, we find the orthogonal direct

sums:
ℝ𝑞 = 𝑁(𝐴)

⟂
⊕𝐶(𝐴𝑇 ),
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ℝ𝑝 = 𝑁(𝐴𝑇 )
⟂
⊕𝐶(𝐴).

where we recall that dim𝐶(𝐴) = dim𝐶(𝐴𝑇 ) = 𝑟 is the rank of 𝐴.
If we look at the map 𝑓 ∶ ℝ𝑞 → ℝ𝑝 defined by 𝑓 (�⃗�) = 𝐴�⃗� in this splitting, we obtain:
• the restriction of 𝑓 to 𝐶(𝐴𝑇 ), 𝑓

|𝐶(𝐴𝑇 ) is invertible between 𝐶(𝐴𝑇 ) and 𝐶(𝐴). Let us denote (𝑓
|𝐶(𝐴𝑇 ))−1 ∶

𝐶(𝐴) → 𝐶(𝐴𝑇 ) its inverse, and
• the restriction of 𝑓 to the orthogonal complement 𝑁(𝐴) is the zero map by definition.
• Consequently, for any �⃗� ∈ ℝ𝑞 , there is a unique orthogonal decomposition �⃗� = �⃗�𝑁(𝐴)+�⃗�𝐶(𝐴𝑇 ) with (�⃗�𝑁(𝐴), �⃗�𝐶(𝐴𝑇 )) ∈

𝑁(𝐴) × 𝐶(𝐴𝑇 ). This lets us understand 𝑓 as:
𝑓 (�⃗�) = 𝑓

|𝐶(𝐴𝑇 )(�⃗�𝐶(𝐴𝑇 )).

Now, the Moore-Penrose pseudo-inverse 𝐴+ is defined as the matrix associated to the linear map 𝑓+ ∶ ℝ𝑝 → ℝ𝑞

defined below between canonical bases:
• the restriction of 𝑓+ to 𝐶(𝐴), is (𝑓

|𝐶(𝐴𝑇 ))−1 ∶ 𝐶(𝐴) → 𝐶(𝐴𝑇 ), and
• the restriction of 𝑓 to the orthogonal complement 𝑁(𝐴𝑇 ) is the zero map.
• Consequently, for any 𝑦 ∈ ℝ𝑝, there is a unique orthogonal decomposition 𝑦 = 𝑦𝑁(𝐴𝑇 )+𝑦𝐶(𝐴) with (𝑦𝑁(𝐴𝑇 ), 𝑦𝐶(𝐴)) ∈

𝑁(𝐴𝑇 ) × 𝐶(𝐴). This lets us understand 𝑓+ as:
𝑓+(𝑦) = 𝑓

|𝐶(𝐴)(𝑦𝐶(𝐴)) = (𝑓
|𝐶(𝐴𝑇 ))−1(𝑦𝐶(𝐴)).

One verifies that this satisfies the four defining properties and that
𝑓◦𝑓+(𝑦) = 𝑦𝐶(𝐴), and 𝑓+◦𝑓 (�⃗�) = �⃗�𝐶(𝐴𝑇 ).

30.3 Singular Value Decomposition (SVD) Method
The pseudoinverse can be computed using SVD, where if 𝐴 = 𝑈Σ𝑉 𝑇 , then 𝐴+ = 𝑉 Σ+𝑈𝑇 , where if Σ ∈ ℝ𝑝×𝑞 is

the matrix with 𝑟 = rank(𝐴) nonzero diagonal values 𝜎1,… , 𝜎𝑟, then Σ+ ∈ ℝ𝑞×𝑝 is the matrix with 𝑟 nonzero diagonal
values 𝜎−11 ,… , 𝜎−1𝑟 .

This ensures that 𝐴𝐴+ = 𝑈𝑈𝑇 and 𝐴+𝐴 = 𝑉 𝑉 𝑇 , which are projections onto the image and support of 𝐴, respec-
tively.

30.4 Properties
• Existence and Uniqueness: Each matrix has a unique pseudoinverse.
• If 𝐴 is invertible, then 𝐴+ = 𝐴−1.
• For a squared diagonal matrix 𝐷, 𝐷+ is obtained by taking reciprocals of nonzero diagonal elements.
• The pseudoinverse of the pseudoinverse is the original matrix: (𝐴+)+ = 𝐴.
• (𝐴𝐵)+ = 𝐵+𝐴+.
• ker(𝐴+) = ker(𝐴𝑇 ) and ran(𝐴+) = ran(𝐴𝑇 ).
• If 𝐴𝑇𝐴 is invertible, then 𝐴+ = (𝐴𝑇𝐴)−1𝐴𝑇 is a left-inverse for 𝐴, i.e. 𝐴+𝐴 = 𝐼𝑞 .
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30.5 Application in Linear Systems and Least Squares
The Moore-Penrose pseudoinverse is instrumental in solving linear systems or more generally least squares prob-

lems. When faced with a system of equations, represented by 𝐴�⃗� = �⃗�, a solution might not exist, and if it does it might
not be unique.

The unique “best” solution using the pseudoinverse is given by �⃗� = 𝐴+�⃗�. This solution minimizes the least squares
error ‖𝐴�⃗� − �⃗�‖2.

Among all possible least squares solutions,�⃗� is the smallest. More precisely for any other minimizer 𝑦 such that
‖𝐴𝑦 − �⃗�‖2 = ‖𝐴�⃗� − �⃗�‖2, one has ‖𝑦‖2 ⩾ ‖�⃗�‖2 with equality only if 𝑦 = �⃗�.

This is the most efficient and stable solution in the presence of numerical errors or perturbations. This property is
particularly useful in data fitting, regression analysis, and machine learning applications where least squares methods
are prevalent.

31 Cayley-Hamilton Theorem and Jordan decomposition

31.1 Linear Maps and Matrices: Similar Matrices and Changes of Bases
31.1.1 Similar Matrices

Two matrices 𝐴 and 𝐵 are similar if there exists an invertible matrix 𝑃 such that 𝐴 = 𝑃𝐵𝑃−1. Similar matrices
represent the same linear transformation in different bases: if one goes from the canonical basis to a basis �⃗�1,… , �⃗�𝑝,
then 𝑃 is the matrix with columns �⃗�1,… , �⃗�𝑝.

31.2 Nilpotent Matrices
31.2.1 Definition

A matrix 𝐴 is nilpotent if there exists some positive integer 𝑘 such that 𝐴𝑘 = 0. The only eigenvalue of nilpotent
matrices is zero, and the non zero nilpotent matrices are not diagonalizable.

31.3 Cayley-Hamilton Theorem
The Cayley-Hamilton theorem states that every square matrix satisfies its own characteristic equation. That is, if

𝑝(𝑠) = det(𝐴 − 𝑠 I𝑝) is the characteristic polynomial of a matrix 𝐴, then 𝑝(𝐴) = 0.
This in particular tells us that all high powers of a matrix can be expressed from the 𝑝 first powers of a matrix, this

is in particular useful, when considering infinite sums such as the exponential of a matrix.

31.4 Jordan Decomposition
31.4.1 Definition

The Jordan decomposition of a matrix, also known as its canonical form, is a representation of a matrix as the sum
of a diagonalizable matrix and a nilpotent matrix.
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31.4.2 Jordan Blocks

Before proving the Jordan decomposition, we need to understand the concept of a Jordan block. A Jordan block is
a square matrix of the form:

𝐽 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜆 ∗ 0 ⋯ 0 0
0 𝜆 ∗ ⋯ 0 0
0 0 𝜆 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 𝜆 ∗
0 0 0 ⋯ 0 𝜆

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

where 𝜆 is an eigenvalue of the matrix, and where the ∗ can take the values 0 or 1. Jordan blocks are used to construct
the Jordan form of a matrix, which is a block diagonal matrix where each block is a Jordan block.

31.4.3 Derivation from the Cayley-Hamilton Theorem

Step 1: Application of Cayley-Hamilton Theorem Let 𝐴 be a square matrix, and let 𝑝(𝜆) be its characteristic
polynomial given by 𝑝(𝜆) = det(𝜆𝐼 −𝐴). By the Cayley-Hamilton theorem, 𝑝(𝐴) = 0. This implies that 𝐴 satisfies its
own characteristic equation.

Step 2: Characteristic Polynomial and Primary Decomposition The vector space into a direct sum of invariant
subspaces (i.e. vector subspaces 𝑉 such that 𝐴(𝑉 ) ⊂ 𝑉 ) corresponding to the nullspace of (𝐴 − 𝜆)𝑚𝜆𝑖 for distinct
eigenvalue 𝜆𝑖, where 𝑚𝜆𝑖 is the multiplicity.

Step 3: Construction of Jordan Blocks For each eigenvalue 𝜆𝑖, consider the subspace 𝑁((𝐴 − 𝜆)𝑚𝜆𝑖 ) associated
with it. In this subspace, the matrix (𝐴 − 𝜆𝑖𝐼) is nilpotent. We can find a basis such that (𝐴 − 𝜆𝑖𝐼) is represented by a
matrix in Jordan block form. This requires finding a chain of generalized eigenvectors that spans the subspace.

Step 4: Assembling the Jordan Form By repeating the process for each distinct eigenvalue, we obtain a collection
of Jordan blocks. The Jordan form of 𝐴 is then a block diagonal matrix where each block is one of these Jordan blocks.

Step 5: Jordan Decomposition The Jordan decomposition of 𝐴 is given by 𝐴 = 𝐷+𝑁 , where 𝐷 is a diagonalizable
matrix containing the eigenvalues of 𝐴, and 𝑁 is a nilpotent matrix corresponding to the superdiagonal elements in
the Jordan blocks. By construction, the matrices 𝐷 and 𝑁 commute.

31.5 Applications
The Jordan decomposition is used to solve systems of linear differential equations and is instrumental in the stability

analysis of dynamical systems.
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